Physics: for Science.. With Modern. -Update (Looseleaf)
Physics: for Science.. With Modern. -Update (Looseleaf)
9th Edition
ISBN: 9781305864566
Author: SERWAY
Publisher: CENGAGE L
Question
Book Icon
Chapter 43, Problem 4P

(a)

To determine

The energy needed to transfer an electron from K to I, to form K+ and I ions from neutral atoms.

(a)

Expert Solution
Check Mark

Answer to Problem 4P

The energy needed to transfer an electron from K to I, to form K+ and I ions from neutral atoms is 1.28eV .

Explanation of Solution

The energy needed to transfer an electron from K to I, to form K+ and I ions from neutral atoms is known as activation energy.

The ionization of energy of K is 4.34eV and electron affinity of I is 3.06eV.

Write the expression that describes the ionization of K.

  K+4.34eVK++e

Here, K is the potassium atom and K+ is the potassium ion.

Write the expression that describes the ionization of I.

  I+eI+3.06eV

Here, I is the iodine atom and I is the iodine ion.

Add equation (I) and (II) to get activation energy.

  (K+4.34eV)+(I+e)(K++e)+(I+3.06eV)

Rearrange above equation to get activation energy.

  (K+I+(4.34eV3.06eV))(K++I)K+I+(1.28eV)K++I

The above relation indicates the 1.28eV energy is required to transfer an electron from K to I, to form K+ and I ions from neutral atoms. Thus, 1.28eV represents the activation energy, (Ea) .

Conclusion:

Therefore, the energy needed to transfer an electron from K to I, to form K+ and I ions from neutral atoms is 1.28eV.

(b)

To determine

The values of σ and .

(b)

Expert Solution
Check Mark

Answer to Problem 4P

The values of σ is 0.272nm and value of is 4.65eV.

Explanation of Solution

Write the expression of Lennard-Jones potential.

  U(r)=4[(σr)12(σr)6]+Ea                                                                             (I)

Here, U(r) is the Lennard-Jones potential, and σ are adjustable parameters, r is the internuclear separation distance.

Differentiate above equation.

  dUdr=d(4[(σr)12(σr)6]+Ea)dr=4σ[12(σr)13+6(σr)7]                                                                        (II)

Write the value of derivative of potential at equilibrium distance.

  dUdr|r=r0=0                                                                                                             (III)

Here, r0 is the equilibrium distance.

Use equation (III) in equation (II) to get value of σ.

  4σ[12(σr)13+6(σr)7]r=r0=012(σr0)13+6(σr0)7=0(σr0)13=12(σr0)7

Rearrange above equation to get σ.

  (σr0)13=12(σr0)7(σr0)6=12σ=r0216                                                                                                     (IV)

It is given that U(r0)=3.37eV.

Substitute r0 for r in equation (I).

  U(r0)=4[(r0216r0)12(r0216r0)6]+Ea=4[(1216)12(1216)6]+Ea=4[(14)(12)]+Ea=+Ea                                                                       (V)

Conclusion:

Substitute 0.305nm for r0 in equation (IV) to get σ.

  σ=0.305nm216=0.272nm

Substitute 3.37eV for U(r0) and 1.28eV for Ea in equation (V) to get .

3.37eV=+1.28eV=1.28eV+3.37eV=4.65eV

Therefore, the values of σ is 0.272nm and value of is 4.65eV.

(c)

To determine

The force needed to break up KI molecule.

(c)

Expert Solution
Check Mark

Answer to Problem 4P

The force needed to break up KI molecule is +6.55nN.

Explanation of Solution

Write the expression for the force of attraction between the atoms.

  F(r)=dUdr (VI)

Use equation (II) in equation (VI) to get F(r).

  F(r)=(4σ[12(σr)13+6(σr)7])=4σ[12(σr)136(σr)7]                                                                (VII)

Write the expression for the maximum force.

  dFdr|r=rbreak=0                                                                                                        (VIII)

Here, rbreak is the distance at which force is maximum.

Put equation (VII) in equation (VIII).

  F(r)=d(4σ[12(σr)136(σr)7])dr=4σ2[156(σr)14+42(σr)8]                                                                    (IX)

Use equation (VIII) in equation (IX) to get σrbreak.

  4σ2[156(σrbreak)14+42(σrbreak)8]=0156(σrbreak)14=42(σrbreak)8(σrbreak)6=42156σrbreak=(42156)16

Conclusion:

Substitute 4.65eV for , 0.272nm for σ and (42156)16 for σr in equation (IX) to get maximum force.

  F(r)=4(4.65eV)(0.272nm)[12((42156)136)6((42156)76)]×109nm1m=6.55×109N×109nN1N=6.55nN

Therefore, the force needed to break up KI molecule is +6.55nN.

(d)

To determine

The force constant for small oscillations about r=r0.

(d)

Expert Solution
Check Mark

Answer to Problem 4P

The force constant for small oscillations about r=r0 is 576N/m.

Explanation of Solution

Rewrite expression of Lennard-Jones potential.

  U(r)=4[(σr)12(σr)6]+Ea

Substitute r0+s for r in above equation.

  U(r0+s)=4[(σr0+s)12(σr0+s)6]+Ea

Substitute r0216 for σ in above equation to get U(r0+s).

  U(r0+s)=4[(r0216r0+s)12(r0216r0+s)6]+Ea

Expand above equation using binomial expansion.

  U(r0+s)=4[(r0216r0+s)12(r0216r0+s)6]+Ea=4[14(1+sr0)1212(1+sr0)6]+Ea=4[14(112sr0+78s2r02)12(16sr0+21s2r02)]+Ea=12sr0+78s2r022+12sr042s2r02+Ea+

Simplify above equation up to second order terms of s

  U(r0+s)=+Ea+0(sr0)+36s2r02+

Use equation (V) in above equation.

  U(r0+s)=U(r0)+36s2r02                                                                                    (X)

The above equation is similar to equation of potential of small oscillations.

Write the general potential equation.

  U(r0+s)=U(r0)+12ks2

Compare above equation with (X) to get k.

  k=72r02                                                                                                                 (XI)

Conclusion:

Substitute 4.65eV for and 0.305nm for r0 in equation (XI) to get k.

  k=72(4.65eV)(0.305nm)2=3599eV/nm2×1.6×1019Nm21eV×(109nm)2m2=576N/m

Therefore, the force constant for small oscillations about r=r0 is 576N/m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When a photon enters the depletion zone of a p-n junction, the photon can scatter from the valence electrons there, transferring part of its energy to each electron, which then jumps to the conduction band. Thus, the photon creates electron–hole pairs. For this reason, the junctions are often used as light detectors, especially in the x-ray and gamma-ray regions of the electromagnetic spectrum. Suppose a single 662 keV gamma-ray photon transfers its energy to electrons in multiple scattering events inside a semiconductor with an energy gap of 1.1 eV, until all the energy is transferred. Assuming that each electron jumps the gap from the top of the valence band to the bottom of the conduction band, find the number of electron – hole pairs created by the process.
For the free electrons in a solid, what is the value of the E/EF ratio knowing that the occupancy factor of the energy level E is equal to 0.05 at a temperature such that kT=EF/4? (NOTE: EF is the Fermi energy) a) 3,65b) 4,20c) 0,26d) 1,74e) 0,04
Assume that the total volume of a metal sample is the sumof the volume occupied by the metal ions making up the lattice andthe (separate) volume occupied by the conduction electrons. Thedensity and molar mass of sodium (a metal) are 971 kg/m3 and 23.0g/mol, respectively; assume the radius of the Na+ ion is 98.0 pm. (a)What percent of the volume of a sample of metallic sodium is occupiedby its conduction electrons? (b) Carry out the same calculationfor copper, which has density, molar mass, and ionic radius of8960 kg/m3, 63.5 g/mol, and 135 pm, respectively. (c) For which ofthese metals do you think the conduction electrons behave morelike a free-electron gas?

Chapter 43 Solutions

Physics: for Science.. With Modern. -Update (Looseleaf)

Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning