Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9781111798789
Author: Dennis O. Wackerly
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 4.6, Problem 100E

a.

To determine

Prove that P(X1=0)>P(X2=0).

a.

Expert Solution
Check Mark

Answer to Problem 100E

It is proved that P(X1=0)>P(X2=0).

Explanation of Solution

It is given that X1 and X2 are two Poisson variables with means λ1 and λ2 respectively. Also it is given that λ2>λ1.

Poisson distribution:

Let X be a discrete random variable and is said to follow Poisson distribution if its probability mass function is given by,

P(X=k)={eλλkk!       ; k=0,1,2,0               ; Otherwise. 

Consider,

P(X1=0)=eλ1λ100!=eλ1

P(X2=0)=eλ2λ200!=eλ2

It is known that,

λ2>λ1eλ2<eλ1P(X2=0)<P(X1=0)P(X1=0)>P(X2=0)

Thus, it is proved that P(X1=0)>P(X2=0).

b.

To determine

Prove that P(X1k)=P(Y>λ1) and P(X2k)=P(Y>λ2).

b.

Expert Solution
Check Mark

Explanation of Solution

Calculation:

It is given that for α is a positive integer, β=1 and y>0.

P(Y>y)=x=0α1yxeyx! 

From the PMF given in Part (a),

P(X1k)=j=1keλ1λ1jj!=j1=0α1λ1j1eλ1(j1)!=x=0α1λ1xeλ1x!, where α=k+1=P(Y>λ1)

Where Y follows Gamma distribution with α1=k and β=1.

Similarly,

P(X2k)=j=1keλ2λ2jj!=j1=0α1λ2j1eλ2(j1)!=x=0α1λ2xeλ2x!, where α=k+1=P(Y>λ2)

Where Y follows Gamma distribution with α1=k and β=1.

Hence, it is proved that P(X1k)=P(Y>λ1) and P(X2k)=P(Y>λ2).

c.

To determine

Prove that P(X1k)>P(X2k).

Explain the answer.

c.

Expert Solution
Check Mark

Explanation of Solution

From Part (b), it is obtained that that P(X1k)=P(Y>λ1) and P(X2k)=P(Y>λ2) and it is also given that λ2>λ1.

Now,

λ2>λ1eλ2<eλ1x=0α1λ2xeλ2x!<x=0α1λ1xeλ1x!P(Y>λ2)<P(Y>λ1)j=1keλ2λ2jj!<j=1keλ1λ1jj!, where α=k+1and k>0P(X2k)<P(X1k)

Hence, it is proved that P(X1k)>P(X2k).

d.

To determine

Interpret the result of Part (c).

d.

Expert Solution
Check Mark

Explanation of Solution

From Part (c), it is proved that P(X1k)>P(X2k).

Hence, it can be said that the Poisson distribution which has greater mean has the smaller cumulative probability value for any constant k, such that k=0,1,2,... .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Let X1, X2, X3, . . . be a sequence of independent Poisson distributed random variables with parameter 1. For n ≥ 1 let Sn = X1 + · · · + Xn. (a) Show that GXi(s) = es−1.(b) Deduce from part (a) that GSn(s) = ens−n.
Consider a real random variable X with zero mean and variance σ2X . Suppose that wecannot directly observe X, but instead we can observe Yt := X + Wt, t ∈ [0, T ], where T > 0 and{Wt : t ∈ R} is a WSS process with zero mean and correlation function RW , uncorrelated with X.Further suppose that we use the following linear estimator to estimate X based on {Yt : t ∈ [0, T ]}:ˆXT =Z T0h(T − θ)Yθ dθ,i.e., we pass the process {Yt} through a causal LTI filter with impulse response h and sample theoutput at time T . We wish to design h to minimize the mean-squared error of the estimate.a. Use the orthogonality principle to write down a necessary and sufficient condition for theoptimal h. (The condition involves h, T , X, {Yt : t ∈ [0, T ]}, ˆXT , etc.)b. Use part a to derive a condition involving the optimal h that has the following form: for allτ ∈ [0, T ],a =Z T0h(θ)(b + c(τ − θ)) dθ,where a and b are constants and c is some function. (You must find a, b, and c in terms ofthe information…
Let X1...., Xn be a random sample of size n from an infinite population and assume X1 d= a + bU2 with the constants a > 0 and b > 0 unknown and U a standard uniform distributed random variable given by FU (x) := P(U ≤ x) =    0 if x ≤ 0 x if 0 < x < 1 1 if x ≥ 1 1.  Compute the cdf of the random variable X1. 2.  Compute E(X1) and V ar(X1). 3.  Give the method of moments estimators of the unknown parameters a and b. Explain how you construct these estimators!

Chapter 4 Solutions

Mathematical Statistics with Applications

Ch. 4.2 - Suppose that Y possesses the density function...Ch. 4.2 - Prob. 12ECh. 4.2 - A supplier of kerosene has a 150-gallon tank that...Ch. 4.2 - A gas station operates two pumps, each of which...Ch. 4.2 - As a measure of intelligence, mice are timed when...Ch. 4.2 - Let Y possess a density function...Ch. 4.2 - Prob. 17ECh. 4.2 - Prob. 18ECh. 4.2 - Prob. 19ECh. 4.3 - Prob. 20ECh. 4.3 - If, as in Exercise 4.17, Y has density function...Ch. 4.3 - Prob. 22ECh. 4.3 - Prob. 23ECh. 4.3 - If Y is a continuous random variable with density...Ch. 4.3 - Prob. 25ECh. 4.3 - If Y is a continuous random variable with mean ...Ch. 4.3 - Prob. 27ECh. 4.3 - Prob. 28ECh. 4.3 - Prob. 29ECh. 4.3 - The proportion of time Y that an industrial robot...Ch. 4.3 - Prob. 31ECh. 4.3 - Weekly CPU time used by an accounting firm has...Ch. 4.3 - The pH of water samples from a specific lake is a...Ch. 4.3 - Prob. 34ECh. 4.3 - If Y is a continuous random variable such that...Ch. 4.3 - Prob. 36ECh. 4.3 - Prob. 37ECh. 4.4 - Suppose that Y has a uniform distribution over the...Ch. 4.4 - If a parachutist lands at a random point on a line...Ch. 4.4 - Suppose that three parachutists operate...Ch. 4.4 - Prob. 41ECh. 4.4 - Prob. 42ECh. 4.4 - A circle of radius r has area A = r2. If a random...Ch. 4.4 - Prob. 44ECh. 4.4 - Upon studying low bids for shipping contracts, a...Ch. 4.4 - 4.45 Upon studying low bids for shipping...Ch. 4.4 - The failure of a circuit board interrupts work...Ch. 4.4 - If a point is randomly located in an interval (a,...Ch. 4.4 - Prob. 49ECh. 4.4 - Prob. 50ECh. 4.4 - The cycle time for trucks hauling concrete to a...Ch. 4.4 - Refer to Exercise 4.51. Find the mean and variance...Ch. 4.4 - Prob. 53ECh. 4.4 - Prob. 54ECh. 4.4 - Refer to Exercise 4.54. Suppose that measurement...Ch. 4.4 - Refer to Example 4.7. Find the conditional...Ch. 4.4 - Prob. 57ECh. 4.5 - Use Table 4, Appendix 3, to find the following...Ch. 4.5 - Prob. 59ECh. 4.5 - Prob. 60ECh. 4.5 - What is the median of a normally distributed...Ch. 4.5 - If Z is a standard normal random variable, what is...Ch. 4.5 - A company that manufactures and bottles apple...Ch. 4.5 - The weekly amount of money spent on maintenance...Ch. 4.5 - In Exercise 4.64, how much should be budgeted for...Ch. 4.5 - A machining operation produces bearings with...Ch. 4.5 - Prob. 67ECh. 4.5 - Prob. 68ECh. 4.5 - Refer to Exercise 4.68. If students possessing a...Ch. 4.5 - Refer to Exercise 4.68. Suppose that three...Ch. 4.5 - Wires manufactured for use in a computer system...Ch. 4.5 - Prob. 72ECh. 4.5 - The width of bolts of fabric is normally...Ch. 4.5 - A soft-drink machine can be regulated so that it...Ch. 4.5 - The machine described in Exercise 4.75 has...Ch. 4.5 - The SAT and ACT college entrance exams are taken...Ch. 4.5 - Show that the maximum value of the normal density...Ch. 4.5 - Show that the normal density with parameters and ...Ch. 4.5 - Assume that Y is normally distributed with mean ...Ch. 4.6 - a If 0, () is defined by ()=0y1eydy, show that...Ch. 4.6 - Use the results obtained in Exercise 4.81 to prove...Ch. 4.6 - The magnitude of earthquakes recorded in a region...Ch. 4.6 - If Y has an exponential distribution and P(Y 2) =...Ch. 4.6 - Refer to Exercise 4.88. Of the next ten...Ch. 4.6 - The operator of a pumping station has observed...Ch. 4.6 - The length of time Y necessary to complete a key...Ch. 4.6 - Historical evidence indicates that times between...Ch. 4.6 - One-hour carbon monoxide concentrations in air...Ch. 4.6 - Prob. 95ECh. 4.6 - Prob. 96ECh. 4.6 - Prob. 97ECh. 4.6 - Consider the plant of Exercise 4.97. How much of...Ch. 4.6 - If 0 and is a positive integer, the...Ch. 4.6 - Prob. 100ECh. 4.6 - Applet Exercise Refer to Exercise 4.88. Suppose...Ch. 4.6 - Prob. 102ECh. 4.6 - Explosive devices used in mining operations...Ch. 4.6 - The lifetime (in hours) Y of an electronic...Ch. 4.6 - Four-week summer rainfall totals in a section of...Ch. 4.6 - The response times on an online computer terminal...Ch. 4.6 - Refer to Exercise 4.106. a. Use Tchebysheffs...Ch. 4.6 - The weekly amount of downtime Y (in hours) for an...Ch. 4.6 - If Y has a probability density function given by...Ch. 4.6 - Suppose that Y has a gamma distribution with...Ch. 4.6 - Prob. 112ECh. 4.7 - Prob. 120ECh. 4.7 - Prob. 122ECh. 4.7 - The relative humidity Y, when measured at a...Ch. 4.7 - The percentage of impurities per batch in a...Ch. 4.7 - Prob. 125ECh. 4.7 - Suppose that a random variable Y has a probability...Ch. 4.7 - Verify that if Y has a beta distribution with = ...Ch. 4.7 - Prob. 128ECh. 4.7 - During an eight-hour shift, the proportion of time...Ch. 4.7 - Prob. 130ECh. 4.7 - Errors in measuring the time of arrival of a wave...Ch. 4.7 - Prob. 132ECh. 4.7 - Prob. 133ECh. 4.7 - Prob. 134ECh. 4.7 - Prob. 135ECh. 4.9 - Suppose that the waiting time for the first...Ch. 4.9 - Prob. 137ECh. 4.9 - Example 4.16 derives the moment-generating...Ch. 4.9 - The moment-generating function of a normally...Ch. 4.9 - Identify the distributions of the random variables...Ch. 4.9 - If 1 2, derive the moment-generating function of...Ch. 4.9 - Refer to Exercises 4.141 and 4.137. Suppose that Y...Ch. 4.9 - The moment-generating function for the gamma...Ch. 4.9 - Consider a random variable Y with density function...Ch. 4.9 - A random variable Y has the density function...Ch. 4.10 - A manufacturer of tires wants to advertise a...Ch. 4.10 - A machine used to fill cereal boxes dispenses, on...Ch. 4.10 - Find P(|Y | 2) for Exercise 4.16. Compare with...Ch. 4.10 - Find P(|Y | 2) for the uniform random variable....Ch. 4.10 - Prob. 150ECh. 4.10 - Prob. 151ECh. 4.10 - Refer to Exercise 4.109. Find an interval that...Ch. 4.10 - Refer to Exercise 4.129. Find an interval for...Ch. 4.11 - A builder of houses needs to order some supplies...Ch. 4.11 - Prob. 157ECh. 4.11 - Consider the nail-firing device of Example 4.15....Ch. 4.11 - Prob. 159ECh. 4 - Prob. 160SECh. 4 - Prob. 161SECh. 4 - Prob. 162SECh. 4 - Prob. 163SECh. 4 - The length of life of oil-drilling bits depends...Ch. 4 - Prob. 165SECh. 4 - Prob. 166SECh. 4 - Prob. 167SECh. 4 - Prob. 168SECh. 4 - An argument similar to that of Exercise 4.168 can...Ch. 4 - Prob. 170SECh. 4 - Suppose that customers arrive at a checkout...Ch. 4 - Prob. 172SECh. 4 - Prob. 173SECh. 4 - Prob. 174SECh. 4 - Prob. 175SECh. 4 - If Y has an exponential distribution with mean ,...Ch. 4 - Prob. 180SECh. 4 - Prob. 181SECh. 4 - Prob. 182SECh. 4 - Prob. 183SECh. 4 - Prob. 184SECh. 4 - Prob. 185SECh. 4 - Prob. 186SECh. 4 - Refer to Exercise 4.186. Resistors used in the...Ch. 4 - Prob. 188SECh. 4 - Prob. 189SECh. 4 - Prob. 190SECh. 4 - Prob. 191SECh. 4 - The velocities of gas particles can be modeled by...Ch. 4 - Because P(YyYc)=F(y)F(c)1F(c) has the properties...Ch. 4 - Prob. 194SECh. 4 - Prob. 195SECh. 4 - Prob. 196SECh. 4 - Prob. 197SECh. 4 - Prob. 198SECh. 4 - Prob. 199SECh. 4 - Prob. 200SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License