General Chemistry (Instructor's)
General Chemistry (Instructor's)
11th Edition
ISBN: 9781305672826
Author: Ebbing
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.32QP

A 3.00-L flask containing 2.0 mol of O2 and 1.0 mol of N2 is in a room that is at 22.0°C.

  1. a How much (what fraction) of the total pressure in the flask is due to the N2?
  2. b The flask is cooled and the pressure drops. What happens, if anything, to the mole fraction of the O2 at the lower temperature?
  3. c L of liquid water is introduced into the flask containing both gases. The pressure is then measured about 45 minutes later. Would you expect the measured pressure to be higher or lower?
  4. d Given the information in this problem and the conditions in part c, would it be possible to calculate the pressure in the flask after the introduction of the water? If it is not possible with the given information, what further information would you need to accomplish this task?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 should be measured.

Concept Introduction:

Ideal gas equation:

At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.

Ideal gas equation:

PV=nRT

And the SI units are

T= Temperature (2730K)                                    = Kelvinn = no of moles(1mole =6.023×1023atoms)       = moleV= Volume (22.4 L)                                           = cubicmeter(m3)P = Pressure (1atm)                                             = pascal(Pa)R= universal gas constant (8.314 joulemole.kelvin) = joulemole.kelvin

Answer to Problem 5.32QP

The total pressure fraction due to N2 gas is 13 .

Explanation of Solution

The flask contains 1.0 mol of N2 gas out of 3.0 mol container, so the fraction of N2 gas in the container is 13 .

Conclusion

The amount of pressure due to N2 gas present in a 3.00 L flask containing 2.0 mol of O2 and 1.0 mol of N2 was measured.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The change in mole fraction of O2 at lower temperature in the flask should be explained

Concept Introduction:

Ideal gas equation:

At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.

Ideal gas equation:

PV=nRT

And the SI units are

T= Temperature (2730K)                                    = Kelvinn = no of moles(1mole =6.023×1023atoms)       = moleV= Volume (22.4 L)                                           = cubicmeter(m3)P = Pressure (1atm)                                             = pascal(Pa)R= universal gas constant (8.314 joulemole.kelvin) = joulemole.kelvin

Answer to Problem 5.32QP

There will be no change in mole fraction of O2 .since mole fraction is not a function of temperature in ideal gas equation

Explanation of Solution

From the ideal gas equation, PV=nRT we know that decrease in volume can decrease amount of pressure but there is no relation between mole fraction and temperature.

Conclusion

The change in mole fraction of O2 at lower temperature in the flask was explained.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The change in pressure when the 1.0 L liquid water added to the flask containing two gases should be explained.

Concept Introduction:

Ideal gas equation:

At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.

Ideal gas equation:

PV=nRT

And the SI units are

T= Temperature (2730K)                                    = Kelvinn = no of moles(1mole =6.023×1023atoms)       = moleV= Volume (22.4 L)                                           = cubicmeter(m3)P = Pressure (1atm)                                             = pascal(Pa)R= universal gas constant (8.314 joulemole.kelvin) = joulemole.kelvin

Answer to Problem 5.32QP

The amount of pressure in the flask increases.

Explanation of Solution

According to ideal gas equation, the pressure in the flask is increases for two reasons

  1. 1. When the water enters the flask occupies some spaces occupied by the gas earlier making gas molecules increase in pressure.
  2. 2.  When the liquid water enters the flask it would evaporate after a time, and evaporate water would contribute the increase in pressure.
Conclusion

The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Using the parameters given in the part c is it possible to calculate the change in pressure should be explained.

Concept Introduction:

Ideal gas equation:

At a constant temperature (K) and pressure (P), the volume (v) occupied by the no of moles of any gas is known as ideal gas equation.

Ideal gas equation:

PV=nRT

And the SI units are

T= Temperature (2730K)                                    = Kelvinn = no of moles(1mole =6.023×1023atoms)       = moleV= Volume (22.4 L)                                           = cubicmeter(m3)P = Pressure (1atm)                                             = pascal(Pa)R= universal gas constant (8.314 joulemole.kelvin) = joulemole.kelvin

Answer to Problem 5.32QP

Yes, the given information is sufficient to calculate the change in pressure.

Explanation of Solution

For calculating pressure from ideal gas equation, we have to know the volume and temperature of the given gas. As the volume of the flask is fixed and temperature is lowered and it can be measured and the gas constant “R’’ value we knew it is a constant and the value of water vapor pressure should be known so that we can calculate the pressure in the flask.

Conclusion

The change in pressure when the 1.0 L liquid water added to the flask containing two gases was explained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 5 Solutions

General Chemistry (Instructor's)

Ch. 5.3 - Prob. 5.3CCCh. 5.4 - How many liters of chlorine gas, Cl2, can be...Ch. 5.5 - A 10.0-L flask contains 1.031 g O2 and 0.572 g CO2...Ch. 5.5 - A flask equipped with a valve contains 3.0 mol of...Ch. 5.5 - Prob. 5.11ECh. 5.6 - Prob. 5.5CCCh. 5.7 - What is the rms speed (in m/s) of a carbon...Ch. 5.7 - At what temperature do hydrogen molecules, H2,...Ch. 5.7 - Prob. 5.14ECh. 5.7 - If it takes 4.67 times as long for a particular...Ch. 5.7 - Prob. 5.6CCCh. 5.8 - Prob. 5.16ECh. 5.8 - Prob. 5.7CCCh. 5 - Prob. 5.1QPCh. 5 - Prob. 5.2QPCh. 5 - Prob. 5.3QPCh. 5 - Prob. 5.4QPCh. 5 - The volume occupied by a gas depends linearly on...Ch. 5 - Prob. 5.6QPCh. 5 - Prob. 5.7QPCh. 5 - Prob. 5.8QPCh. 5 - Prob. 5.9QPCh. 5 - Prob. 5.10QPCh. 5 - Prob. 5.11QPCh. 5 - Prob. 5.12QPCh. 5 - Prob. 5.13QPCh. 5 - Prob. 5.14QPCh. 5 - Prob. 5.15QPCh. 5 - Prob. 5.16QPCh. 5 - Prob. 5.17QPCh. 5 - Prob. 5.18QPCh. 5 - Prob. 5.19QPCh. 5 - Prob. 5.20QPCh. 5 - Under what conditions does the behavior of a real...Ch. 5 - Prob. 5.22QPCh. 5 - Prob. 5.23QPCh. 5 - Prob. 5.24QPCh. 5 - Prob. 5.25QPCh. 5 - A 1-liter container is filled with 2.0 mol Ar, 2.0...Ch. 5 - Prob. 5.27QPCh. 5 - Prob. 5.28QPCh. 5 - Prob. 5.29QPCh. 5 - Prob. 5.30QPCh. 5 - Prob. 5.31QPCh. 5 - A 3.00-L flask containing 2.0 mol of O2 and 1.0...Ch. 5 - Prob. 5.33QPCh. 5 - Two identical He-filled balloons, each with a...Ch. 5 - You have a balloon that contains O2. What could...Ch. 5 - Prob. 5.36QPCh. 5 - Prob. 5.37QPCh. 5 - The barometric pressure measured outside an...Ch. 5 - Prob. 5.39QPCh. 5 - You fill a balloon with helium gas to a volume of...Ch. 5 - Prob. 5.41QPCh. 5 - Prob. 5.42QPCh. 5 - A McLeod gauge measures low gas pressures by...Ch. 5 - If 456 dm3 of krypton at 101 kPa and 21C is...Ch. 5 - A sample of nitrogen gas at 17C and 760 mmHg has a...Ch. 5 - Prob. 5.46QPCh. 5 - Helium gas, He, at 22C and 1.00 atm occupied a...Ch. 5 - Prob. 5.48QPCh. 5 - A vessel containing 39.5 cm3 of helium gas at 25C...Ch. 5 - A sample of 62.3 cm3 of argon gas at 18C was...Ch. 5 - A bacterial culture isolated from sewage produced...Ch. 5 - Pantothenic acid is a B vitamin. Using the Dumas...Ch. 5 - In the presence of a platinum catalyst, ammonia,...Ch. 5 - Methanol, CH3OH, can be produced in industrial...Ch. 5 - Prob. 5.55QPCh. 5 - Prob. 5.56QPCh. 5 - A cylinder of oxygen gas contains 91.3 g O2. If...Ch. 5 - In an experiment, you fill a heavy-walled 6.00-L...Ch. 5 - Prob. 5.59QPCh. 5 - According to your calculations, a reaction should...Ch. 5 - Prob. 5.61QPCh. 5 - A 2.50-L flask was used to collect a 5.65-g sample...Ch. 5 - What is the density of ammonia gas, NH3, at 31C...Ch. 5 - Calculate the density of hydrogen sulfide gas,...Ch. 5 - Butane, C4H10, is an easily liquefied gaseous...Ch. 5 - Chloroform, CHCl3, is a volatile (easily...Ch. 5 - A chemist vaporized a liquid compound and...Ch. 5 - You vaporize a liquid substance at 100C and 755...Ch. 5 - A 2.56-g sample of a colorless liquid was...Ch. 5 - A 2.30-g sample of white solid was vaporized in a...Ch. 5 - Ammonium chloride, NH4Cl, is a while solid. When...Ch. 5 - Prob. 5.72QPCh. 5 - Calcium carbide reacts with water to produce...Ch. 5 - Magnesium metal reacts with hydrochloric acid to...Ch. 5 - Lithium hydroxide, LiOH, is used in spacecraft to...Ch. 5 - Magnesium burns in air to produce magnesium oxide,...Ch. 5 - Urea, NH2CONH2, is a nitrogen fertilizer that is...Ch. 5 - Nitric acid is produced from nitrogen monoxide,...Ch. 5 - Ammonium sulfate is used as a nitrogen and sulfur...Ch. 5 - Sodium hydrogen carbonate is also known as baking...Ch. 5 - Calculate the total pressure (in atm) of a mixture...Ch. 5 - Calculate the total pressure (in atm) of a mixture...Ch. 5 - A 900.0-mL flask contains 1.16 mg O2 and 0.42 mg...Ch. 5 - The atmosphere in a sealed diving bell contained...Ch. 5 - Prob. 5.85QPCh. 5 - Prob. 5.86QPCh. 5 - Formic acid, HCHO2, is a convenient source of...Ch. 5 - An aqueous solution of ammonium nitrite, NH4NO2,...Ch. 5 - Prob. 5.89QPCh. 5 - Calculate the rms speed of Br2 molecules at 23C...Ch. 5 - Uranium hexafluoride, UF6, is a white solid that...Ch. 5 - For a spacecraft or a molecule to leave the moon,...Ch. 5 - Prob. 5.93QPCh. 5 - At what temperature does the rms speed of O2...Ch. 5 - Prob. 5.95QPCh. 5 - Prob. 5.96QPCh. 5 - Prob. 5.97QPCh. 5 - Prob. 5.98QPCh. 5 - If 4.83 mL of an unknown gas effuses through a...Ch. 5 - A given volume of nitrogen, N2, required 68.3 s to...Ch. 5 - Calculate the pressure of ethanol vapor,...Ch. 5 - Calculate the pressure of water vapor at 120.0C if...Ch. 5 - Calculate the molar volume of ethane at 1.00 atm...Ch. 5 - Calculate the molar volume of oxygen at 1.00 atm...Ch. 5 - A glass tumbler containing 243 cm3 of air at 1.00 ...Ch. 5 - The density of air at 20C and 1.00 atm is 1.205...Ch. 5 - A flask contains 201 mL of argon at 21C and 738...Ch. 5 - Prob. 5.108QPCh. 5 - A balloon containing 5.0 dm3 of gas at 14C and...Ch. 5 - Prob. 5.110QPCh. 5 - A radioactive metal atom decays (goes to another...Ch. 5 - The combustion method used to analyze for carbon...Ch. 5 - Prob. 5.113QPCh. 5 - A hydrocarbon gas has a density of 1.22 g/L at 20C...Ch. 5 - A person exhales about 5.8 102 L of carbon...Ch. 5 - Pyruvic acid, HC3H3O3, is involved in cell...Ch. 5 - Liquid oxygen was first prepared by heating...Ch. 5 - Raoul Pictet, the Swiss physicist who first...Ch. 5 - Prob. 5.119QPCh. 5 - A 21.4-mL volume of hydrochloric acid reacts...Ch. 5 - A 41.41-mL sample of a 0.1250 M acid reacts with...Ch. 5 - A 48.90-mL sample of a 0.2040 M acid reacts with...Ch. 5 - If the rms speed of NH3 molecules is found to be...Ch. 5 - If the rms speed of He atoms in the exosphere...Ch. 5 - Prob. 5.125QPCh. 5 - Prob. 5.126QPCh. 5 - A 1.000-g sample of an unknown gas at 0C gives the...Ch. 5 - Plot the data given in Table 5.3 for oxygen at 0C...Ch. 5 - Carbon monoxide, CO, and oxygen, O2, react...Ch. 5 - Suppose the apparatus shown in the figure...Ch. 5 - Prob. 5.131QPCh. 5 - Prob. 5.132QPCh. 5 - Prob. 5.133QPCh. 5 - Prob. 5.134QPCh. 5 - A 19.9-mL volume of a hydrochloric acid solution...Ch. 5 - The graph here represents the distribution of...Ch. 5 - Prob. 5.137QPCh. 5 - Prob. 5.138QPCh. 5 - Prob. 5.139QPCh. 5 - Sulfur-containing compounds give skunks their...Ch. 5 - Sulfur hexafluoride, SF6, is an extremely dense...Ch. 5 - Prob. 5.142QPCh. 5 - Prob. 5.143QPCh. 5 - Shown below are three containers of an ideal gas...Ch. 5 - A 275-mL sample of CO gas is collected over water...Ch. 5 - Ethanol, the alcohol used in automobile fuels, is...Ch. 5 - Silicon nitride, Si3N4, is a material that is used...Ch. 5 - Prob. 5.148QPCh. 5 - If you have a 150-L cylinder filled with chlorine...Ch. 5 - Prob. 5.150QPCh. 5 - A sample of natural gas is 85.2% methane, CH4, and...Ch. 5 - A sample of a breathing mixture for divers...Ch. 5 - A sample of sodium peroxide, Na2O2, was reacted...Ch. 5 - Prob. 5.154QPCh. 5 - A mixture contained calcium carbonate, CaCO3, and...Ch. 5 - A mixture contained zinc sulfide, ZnS, and lead...Ch. 5 - A mixture of N2 and Ne contains equal moles of...Ch. 5 - A mixture of Ne and Ar gases at 350 K contains...Ch. 5 - An ideal gas with a density of 3.00 g/L has a...Ch. 5 - Prob. 5.160QPCh. 5 - Prob. 5.161QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY