FLUID MECHANICS-PHYSICAL ACCESS CODE
FLUID MECHANICS-PHYSICAL ACCESS CODE
8th Edition
ISBN: 9781264005086
Author: White
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5.73P
To determine

i.

The relationship in dimensionless form.

Expert Solution
Check Mark

Answer to Problem 5.73P

The Pi terms are f(n,ΩDv)=PD2ρv3

Explanation of Solution

Given:

Windmill parameter:

Diameter = 50 cm

Power developed = 2.7 kW

Speed of rotation = 4800 rpm

Concept Used:

P=f(D,ρ,v,Ω,n)k=5j=3(M,L,T)Numberofterms=kj

Calculation:

P=f(D,ρ,v,Ω,n)k=5j=3(M,L,T)Numberofterms=kjNumberofterms=53Numberofterms=2

The dimensions of each variable are,

{P}={ML2T3}{D}={L}{ρ}={ML3}{v}={LT1}{Ω}={T1}{n}=1Nowtaking(D,ρ,v)asrepeatingvariables,wegetf(n, ΩDv)=PD2ρv3

Conclusion:

The Pi terms are f(n,ΩDv)=PD2ρv3.

To determine

ii.

The power developed by a geometrical and dynamically similar prototype with a diameter of 5 m.

Expert Solution
Check Mark

Answer to Problem 5.73P

The power developed is 5.989 kW

Explanation of Solution

Given:

Geometric parameter of the prototype:

Diameter = 5 m

Wind speed = 12 m/s

Altitude = 2000 m

Concept Used:

f(n,ΩDv)=PD2ρv3=constant

Calculation:

For geometric similarity  n( number of blades) = constant

For Dynamic similarity:

( ΩDv)=PD2ρv3=constantP1D12ρ1v13=P2D22ρ2v23P2=P1*D22ρ2v23D12ρ1v13Thedensityofairat2000maltitudeis1.0067kg/m3Thedensityofairatsealevelaltitudeis1.2255kg/m3P2=2700*52*1.0067* 123 0.52*1.2255* 403P2=5989W5.989kW

Conclusion:

The power developed is 5.989 kW.

To determine

iii.

The rotation rate by a geometrical and dynamically similar prototype with a diameter of 5 m.

Expert Solution
Check Mark

Answer to Problem 5.73P

The rotation rate is 144 rev/min

Explanation of Solution

Given:

Geometric parameter of the prototype:

Diameter = 5 m

Wind speed = 12 m/s

Altitude = 2000 m

Concept Used:

f(n,ΩDv)=PD2ρv3=constant

Calculation:

For geometric similarity  n( number of blades) = constant

For Dynamic similarity:

( ΩDv)=constantΩ1D1v1=Ω2D2v2Ω2=Ω1D1v1*v2D2Ω2=4800*0.540*125Ω2=144rev/min

Conclusion:

The rotation rate is 144 rev/min.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 5 Solutions

FLUID MECHANICS-PHYSICAL ACCESS CODE

Ch. 5 - Prob. 5.11PCh. 5 - The Stokes number, St, used in particle dynamics...Ch. 5 - Prob. 5.13PCh. 5 - Flow in a pipe is often measured with an orifice...Ch. 5 - The wall shear stress T in a boundary layer is...Ch. 5 - P5.16 Convection heat transfer data are often...Ch. 5 - If you disturb a tank of length L and water depth...Ch. 5 - Prob. 5.18PCh. 5 - Prob. 5.19PCh. 5 - Prob. 5.20PCh. 5 - Prob. 5.21PCh. 5 - As will be discussed in Chap. 11, the power P...Ch. 5 - The period T of vibration of a beam is a function...Ch. 5 - Prob. 5.24PCh. 5 - The thrust F of a propeller is generally thought...Ch. 5 - A pendulum has an oscillation period T which is...Ch. 5 - Prob. 5.27PCh. 5 - Prob. 5.28PCh. 5 - P5.29 When fluid in a pipe is accelerated linearly...Ch. 5 - Prob. 5.30PCh. 5 - P5.31 The pressure drop per unit length in...Ch. 5 - A weir is an obstruction in a channel flow that...Ch. 5 - Prob. 5.33PCh. 5 - Prob. 5.34PCh. 5 - Prob. 5.35PCh. 5 - Prob. 5.36PCh. 5 - Prob. 5.37PCh. 5 - Prob. 5.38PCh. 5 - Prob. 5.39PCh. 5 - Prob. 5.40PCh. 5 - A certain axial flow turbine has an output torque...Ch. 5 - When disturbed, a floating buoy will bob up and...Ch. 5 - Prob. 5.43PCh. 5 - Prob. 5.44PCh. 5 - P5.45 A model differential equation, for chemical...Ch. 5 - P5.46 If a vertical wall at temperature Tw is...Ch. 5 - The differential equation for small-amplitude...Ch. 5 - Prob. 5.48PCh. 5 - P5.48 A smooth steel (SG = 7.86) sphere is...Ch. 5 - Prob. 5.50PCh. 5 - Prob. 5.51PCh. 5 - Prob. 5.52PCh. 5 - Prob. 5.53PCh. 5 - Prob. 5.54PCh. 5 - Prob. 5.55PCh. 5 - P5.56 Flow past a long cylinder of square...Ch. 5 - Prob. 5.57PCh. 5 - Prob. 5.58PCh. 5 - Prob. 5.59PCh. 5 - Prob. 5.60PCh. 5 - Prob. 5.61PCh. 5 - Prob. 5.62PCh. 5 - The Keystone Pipeline in the Chapter 6 opener...Ch. 5 - Prob. 5.64PCh. 5 - Prob. 5.65PCh. 5 - Prob. 5.66PCh. 5 - Prob. 5.67PCh. 5 - For the rotating-cylinder function of Prob. P5.20,...Ch. 5 - Prob. 5.69PCh. 5 - Prob. 5.70PCh. 5 - The pressure drop in a venturi meter (Fig. P3.128)...Ch. 5 - Prob. 5.72PCh. 5 - Prob. 5.73PCh. 5 - Prob. 5.74PCh. 5 - Prob. 5.75PCh. 5 - Prob. 5.76PCh. 5 - Prob. 5.77PCh. 5 - Prob. 5.78PCh. 5 - Prob. 5.79PCh. 5 - Prob. 5.80PCh. 5 - Prob. 5.81PCh. 5 - A one-fiftieth-scale model of a military airplane...Ch. 5 - Prob. 5.83PCh. 5 - Prob. 5.84PCh. 5 - *P5.85 As shown in Example 5.3, pump performance...Ch. 5 - Prob. 5.86PCh. 5 - Prob. 5.87PCh. 5 - Prob. 5.88PCh. 5 - P5.89 Wall friction Tw, for turbulent flow at...Ch. 5 - Prob. 5.90PCh. 5 - Prob. 5.91PCh. 5 - Prob. 5.1WPCh. 5 - Prob. 5.2WPCh. 5 - Prob. 5.3WPCh. 5 - Prob. 5.4WPCh. 5 - Prob. 5.5WPCh. 5 - Prob. 5.6WPCh. 5 - Prob. 5.7WPCh. 5 - Prob. 5.8WPCh. 5 - Prob. 5.9WPCh. 5 - Prob. 5.10WPCh. 5 - Given the parameters U,L,g,, that affect a certain...Ch. 5 - Prob. 5.2FEEPCh. 5 - Prob. 5.3FEEPCh. 5 - Prob. 5.4FEEPCh. 5 - Prob. 5.5FEEPCh. 5 - Prob. 5.6FEEPCh. 5 - Prob. 5.7FEEPCh. 5 - Prob. 5.8FEEPCh. 5 - In supersonic wind tunnel testing, if different...Ch. 5 - Prob. 5.10FEEPCh. 5 - Prob. 5.11FEEPCh. 5 - Prob. 5.12FEEPCh. 5 - Prob. 5.1CPCh. 5 - Prob. 5.2CPCh. 5 - Prob. 5.3CPCh. 5 - Prob. 5.4CPCh. 5 - Does an automobile radio antenna vibrate in...Ch. 5 - Prob. 5.1DPCh. 5 - Prob. 5.2DP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License