Mathematical Statistics with Applications
Mathematical Statistics with Applications
7th Edition
ISBN: 9780495110811
Author: Dennis Wackerly, William Mendenhall, Richard L. Scheaffer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.11, Problem 142E

a.

To determine

Prove that E(Y)=nαα+β.

a.

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Binomial probability distribution:

A discrete random variable Y is said to follow a Binomial distribution with mean np and variance np(1p), if the probability mass function of Y is as follows:

p(y)=(ny)py(1p)ny, y=0,1,...,n where n is the number of trials and p is the probability of success.

The mean and variance of Y are npand np(1p), respectively.

Beta distribution:

A continuous random variable Y is said to follow a Beta distribution with parameters α and β, if the probability density function of Y is as follows:

f(y)=xα1(1x)β1αβα+β,0<x<1.

The mean and variance of Y are aα+βand αβ(α+β)2(α+β+1), respectively.

The conditional expectation of any real valued function g(Y1) given that Y2=y2 is defined as follows:

E[g(Y1)|Y2=y2]=y1g(y1)f(y1|y2), where Y1 only follows discrete distribution.

It is given that the conditional distribution of Y given p follows Binomial distribution with parameters n and p where p  follows Beta distribution with parameters α and β.

Thus, the expected value of the conditional distribution of Y2 given Y1=y1 is as follows:

E(Y|p)=y=0ny(ny)py(1p)ny=y=0nyn!(ny)!y!py(1p)ny=y=1nn!(ny)!(y1)!py(1p)ny=npy1=0n1(n1)!(ny2)!(y1)!py1(1p)ny+1=np(p+1p)m1=np(1)=np.

For two random variables Y1and Y2, it is known that E(Y1)=E[E(Y1|Y2)] and V(Y1)=E[V(Y1|Y2)]+V[E(Y1|Y2)].

Hence,

E(Y)=E[E(Y|p)]=E[np]=nE(p)=n01ppα1(1p)β1αβα+βdp=nα+βαβ01pα+11(1p)β1dp=nα+βαβα+1βα+1+β=n(α+β1)!(α1)!(β1)!α!(β1)!(α+β)!=nαα+β

Therefore, it is proved that E(Y)=nαα+β.

b.

To determine

Prove that V(Y)=nαβ(α+β+n)(α+β)2(α+β+1).

b.

Expert Solution
Check Mark

Explanation of Solution

Calculation:

For two random variables Y1and Y2, it is known that V(Y1)=E[V(Y1|Y2)]+V[E(Y1|Y2)].

From Part (a), it is obtained that E(Y|p)=np, V(Y|p)=np(1p), E(p)=αα+β and V(p)=αβ(α+β)2(α+β+1).

Hence,

V(Y)=E[V(Y|p)]+V[E(Y|p)]=E[np(1p)]+V[np]=nE(p)nE(p2)+n2V(p)=nαα+βn[αβ(α+β)2(α+β+1)α2(α+β)2]+n2αβ(α+β)2(α+β+1)=nα(α+β)(α+β+1)nαβα2(α+β+1)+n2αβ(α+β)2(α+β+1)=nαβ(α+β+n)(α+β)2(α+β+1)

Therefore, it is proved that V(Y)=nαβ(α+β+n)(α+β)2(α+β+1).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
X is an exponential random variable with λ =1 and Y is a uniform random variable defined on (0, 2). If X and Y are independent, find the PDF of Z = X-Y2
1. Consider the Gaussian distribution N (m, σ2).(a) Show that the pdf integrates to 1.(b) Show that the mean is m and the variance is σ.
A poisson random variables has f(x,3)= 3x e-3÷x! ,x= 0,1.......,∞. find the probabilities for X=0 1 2 3 4 and also find mean and variance from f(x,3).?

Chapter 5 Solutions

Mathematical Statistics with Applications

Ch. 5.2 - Suppose that Y1 and Y2 are uniformly distributed...Ch. 5.2 - Prob. 12ECh. 5.2 - Prob. 13ECh. 5.2 - Prob. 14ECh. 5.2 - The management at a fast-food outlet is interested...Ch. 5.2 - Let Y1 and Y2 denote the proportions of time (out...Ch. 5.2 - Let (Y1, Y2) denote the coordinates of a point...Ch. 5.2 - Prob. 18ECh. 5.3 - In Exercise 5.1, we determined that the joint...Ch. 5.3 - Refer to Exercise 5.2. a Derive the marginal...Ch. 5.3 - In Exercise 5.3, we determined that the joint...Ch. 5.3 - In Exercise 5.4, you were given the following...Ch. 5.3 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.3 - Prob. 24ECh. 5.3 - Prob. 25ECh. 5.3 - Prob. 26ECh. 5.3 - Prob. 27ECh. 5.3 - In Exercise 5.10, we proved that...Ch. 5.3 - Prob. 29ECh. 5.3 - In Exercise 5.12, we were given the following...Ch. 5.3 - In Exercise 5.13, the joint density function of Y1...Ch. 5.3 - Prob. 32ECh. 5.3 - Suppose that Y1 is the total time between a...Ch. 5.3 - Prob. 34ECh. 5.3 - Prob. 35ECh. 5.3 - Prob. 36ECh. 5.3 - Prob. 37ECh. 5.3 - Let Y1 denote the weight (in tons) of a bulk item...Ch. 5.3 - Prob. 39ECh. 5.3 - Prob. 40ECh. 5.3 - Prob. 41ECh. 5.3 - Prob. 42ECh. 5.4 - Let Y1 and Y2 have joint density function f(y1,...Ch. 5.4 - Prob. 44ECh. 5.4 - Prob. 45ECh. 5.4 - Prob. 46ECh. 5.4 - In Exercise 5.3, we determined that the joint...Ch. 5.4 - In Exercise 5.4, you were given the following...Ch. 5.4 - In Example 5.4 and Exercise 5.5, we considered the...Ch. 5.4 - Prob. 50ECh. 5.4 - Prob. 51ECh. 5.4 - Prob. 52ECh. 5.4 - Prob. 53ECh. 5.4 - Prob. 54ECh. 5.4 - Prob. 55ECh. 5.4 - In Exercise 5.12, we were given the following...Ch. 5.4 - Prob. 57ECh. 5.4 - Suppose that the random variables Y1 and Y2 have...Ch. 5.4 - If Y1 is the total time between a customers...Ch. 5.4 - Prob. 60ECh. 5.4 - Prob. 61ECh. 5.4 - Prob. 62ECh. 5.4 - Let Y1 and Y2 be independent exponentially...Ch. 5.4 - Prob. 64ECh. 5.4 - Prob. 65ECh. 5.4 - Let F1(y1) and F2(y2) be two distribution...Ch. 5.4 - Prob. 67ECh. 5.4 - Prob. 68ECh. 5.4 - The length of life Y for fuses of a certain type...Ch. 5.4 - A bus arrives at a bus stop at a uniformly...Ch. 5.4 - Prob. 71ECh. 5.6 - In Exercise 5.1, we determined that the joint...Ch. 5.6 - Prob. 73ECh. 5.6 - Refer to Exercises 5.6, 5.24, and 5.50. Suppose...Ch. 5.6 - Prob. 75ECh. 5.6 - Prob. 76ECh. 5.6 - Prob. 77ECh. 5.6 - Prob. 78ECh. 5.6 - Suppose that, as in Exercise 5.11, Y1 and Y2 are...Ch. 5.6 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.6 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.6 - In Exercise 5.38, we determined that the joint...Ch. 5.6 - Prob. 83ECh. 5.6 - In Exercise 5.62, we considered two individuals...Ch. 5.6 - Prob. 85ECh. 5.6 - Prob. 86ECh. 5.6 - Prob. 87ECh. 5.6 - Prob. 88ECh. 5.7 - In Exercise 5.1, we determined that the joint...Ch. 5.7 - Prob. 90ECh. 5.7 - In Exercise 5.8, we derived the fact that...Ch. 5.7 - Prob. 92ECh. 5.7 - Suppose that, as in Exercises 5.11 and 5.79, Y1...Ch. 5.7 - Prob. 94ECh. 5.7 - Prob. 95ECh. 5.7 - Prob. 96ECh. 5.7 - The random variables Y1 and Y2 are such that E(Y1)...Ch. 5.7 - Prob. 98ECh. 5.7 - Prob. 99ECh. 5.7 - Let Z be a standard normal random variable and let...Ch. 5.7 - Prob. 101ECh. 5.8 - A firm purchases two types of industrial...Ch. 5.8 - Prob. 103ECh. 5.8 - Prob. 104ECh. 5.8 - Prob. 105ECh. 5.8 - In Exercise 5.9, we determined that...Ch. 5.8 - In Exercise 5.12, we were given the following...Ch. 5.8 - If Y1 is the total time between a customers...Ch. 5.8 - In Exercise 5.16, Y1 and Y2 denoted the...Ch. 5.8 - Suppose that Y1 and Y2 have correlation...Ch. 5.8 - Prob. 111ECh. 5.8 - In Exercise 5.18, Y1 and Y2 denoted the lengths of...Ch. 5.8 - A retail grocery merchant figures that her daily...Ch. 5.8 - For the daily output of an industrial operation,...Ch. 5.8 - Prob. 115ECh. 5.8 - Prob. 116ECh. 5.8 - A population of N alligators is to be sampled in...Ch. 5.8 - Prob. 118ECh. 5.9 - A learning experiment requires a rat to run a maze...Ch. 5.9 - Prob. 120ECh. 5.9 - Refer to Exercise 5.117. Suppose that the number N...Ch. 5.9 - The weights of a population of mice fed on a...Ch. 5.9 - Prob. 123ECh. 5.9 - The typical cost of damages caused by a fire in a...Ch. 5.9 - When commercial aircraft are inspected, wing...Ch. 5.9 - Prob. 126ECh. 5.9 - Prob. 127ECh. 5.10 - Let Y1 and Y2 have a bivariate normal...Ch. 5.10 - Prob. 129ECh. 5.10 - Prob. 130ECh. 5.10 - Prob. 131ECh. 5.10 - Prob. 132ECh. 5.11 - Prob. 133ECh. 5.11 - Prob. 134ECh. 5.11 - In Exercise 5.41, we considered a quality control...Ch. 5.11 - In Exercise 5.42, the number of defects per yard...Ch. 5.11 - In Exercise 5.38, we assumed that Y1, the weight...Ch. 5.11 - Assume that Y denotes the number of bacteria per...Ch. 5.11 - Prob. 139ECh. 5.11 - Prob. 140ECh. 5.11 - Let Y1 have an exponential distribution with mean ...Ch. 5.11 - Prob. 142ECh. 5.11 - Prob. 143ECh. 5 - Prove Theorem 5.9 when Y1 and Y2 are independent...Ch. 5 - Prob. 145SECh. 5 - Prob. 146SECh. 5 - Two friends are to meet at the library. Each...Ch. 5 - Prob. 148SECh. 5 - Prob. 149SECh. 5 - Prob. 150SECh. 5 - The lengths of life Y for a type of fuse has an...Ch. 5 - In the production of a certain type of copper, two...Ch. 5 - Suppose that the number of eggs laid by a certain...Ch. 5 - In a clinical study of a new drug formulated to...Ch. 5 - Prob. 155SECh. 5 - Refer to Exercise 5.86. Suppose that Z is a...Ch. 5 - Prob. 157SECh. 5 - Prob. 158SECh. 5 - Prob. 159SECh. 5 - Prob. 160SECh. 5 - Suppose that we are to observe two independent...Ch. 5 - Prob. 162SECh. 5 - Prob. 163SECh. 5 - Prob. 164SECh. 5 - Prob. 165SECh. 5 - Prob. 166SECh. 5 - Prob. 167SE
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License