ENGINEERING CIRCUIT ANALYSIS ACCESS >I<
ENGINEERING CIRCUIT ANALYSIS ACCESS >I<
9th Edition
ISBN: 9781264010936
Author: Hayt
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 55E
To determine

Derive the expression for vout and IL in the op amp circuit.

Expert Solution & Answer
Check Mark

Answer to Problem 55E

The derived expression for vout is

[R4RL(R1+R2)R1R4RL+R1R3R4R3RLR2]V1[R2RLR4+R2R3RL+R2R3R4R1R4RL+R1R3R4R3RLR2]V2 and for IL is

(R4R1R1R4RL+R1R3R4R3RLR2)V1[R2R3R1R4RL+R1R3R4R3RLR2]V2.

Explanation of Solution

Calculation:

The redrawn circuit is shown in Figure 1 as follows.

ENGINEERING CIRCUIT ANALYSIS ACCESS >I<, Chapter 6, Problem 55E

Refer to the Figure 1.

The expression for nodal analysis at node voltage Va is,

(VaV2R1)+(VavoutR2)=0 (1)

Here,

V2 is the input voltage of op amp,

vout is the output voltage of op amp and

R1 and R2 are the resistances of op amp.

The expression for nodal analysis at node voltage Vb is,

(VbRL)+(VbV1R3)+(VbvoutR4)=0 (2)

Here,

V1 is the input voltage of op amp and

RL, R3 and R4 are the resistance of op amp.

The expression for the virtual ground concept is as follows.

Va=Vb (3)

The expression for current IL in the circuit is,

IL=VbRL (4)

Here,

IL is the current for resistance RL in circuit.

Simplify equation (1) for Va.

Va(1R1+1R2)=V2R1+voutR2Va(R1+R2R1R2)=V2R2+voutR1R1R2

Va=V2R2+voutR1(R1+R2) (5)

Simplify equation (2) as follows.

Va(1R3+1R4+1RL)=V1R3+voutR4 (6)

Substitute V2R2+voutR1(R1+R2) for Va in the equation (6).

(V2R2+voutR1R1+R2)(R4RL+R3RL+R3R4R3R4RL)=V1R4+voutR3R3R4(V2R2R1+R2)(R4RL+R3RL+R3R4RL)+(voutR1R1+R2)(R4RL+R3RL+R3R4RL)=V1R4+voutR3

Rearrange for vout.

vout(R1R4RL+R1R3R4+R1+R3+RLRL(R1+R2)R3)=V1R4(R2R4RL+R3R2RL+R2R3R4RL(R1+R2))V2vout(R1R4RL+R1R3RL+R1R3R4            R3RLR1R3RLR2)=[V1R4RL(R1+R2)(R2R4RL+R2R3RL+R2R3R4)V2]

Simplify for vout.

vout(R1R4RL+R1R3R4R3RLR2)=V1R4RL(R1+R2)(R2R4RL+R2R3RL+R2R3R4)V2

vout=[R4RL(R1+R2)R1R4RL+R1R3R4R3RLR2]V1[R2RLR4+R2R3RL+R2R3R4R1R4RL+R1R3R4R3RLR2]V2 (7)

Substitute V2R2+voutR1(R1+R2) for Vb in equation (4).

IL=V2R2+voutR1RL(R1+R2) (8)

Substitute value of vout from equation (7) in equation (8).

IL=V2R2RL(R1+R2)+R1RL(R1+R2){[R4RL(R1+R2)R1R4RL+R1R3R4R3RLR2]V1[R2R4RL+RLR2R3+R2R3R4R1R4RL+R1R3R4R3RLR2]V2}=(R4R1R1R4RL+R1R3R4R3RLR2)V1+[R2RL(R1+R2)R1(R2R4RL+R2R3RL+R2R3R4)RL(R1+R2)(R1R4RL+R1R3R4R3R2RL)]V2=(R4R1R1R4RL+R1R3R4R3RLR2)V1[R3R2RL(R1+R2)RL(R1+R2)(R1R4RL+R4R3R1R3RLR2)]V2=(R4R1R1R4RL+R1R3R4R3RLR2)V1[R2R3R1R4RL+R1R3R4R3RLR2]V2

Conclusion:

Thus, the derived expression for vout is

[R4RL(R1+R2)R1R4RL+R1R3R4R3RLR2]V1[R2RLR4+R2R3RL+R2R3R4R1R4RL+R1R3R4R3RLR2]V2 and for IL is

(R4R1R1R4RL+R1R3R4R3RLR2)V1[R2R3R1R4RL+R1R3R4R3RLR2]V2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Calculate the capacitance between two parallel plates, each of which is 100 sq. Inches and 2 mm apart in air. 2. A capacitor is charged with 0.23 J of energy at a voltage of 48V. What is its capacitance? 3. A 50-uF capacitor is initially charged. Determine the initial charge of the 50-uF capacitor if the charge transferred to a 100-uF capacitor, when connected in parallel, is 200-uC.
* Determine the charge stored on a 2.2 µF capacitor if the capacitor’s voltage is 5 V.  *In some integrated circuits, the insulator or dielectric is silicon dioxide, which has a relative permittivity of 4. If a square capacitor measuring 10 µm on edge, has a capacitance of 100 fF, what is the separation distance between the capacitor’s plates, in µm?
A parallel plate capacitor having area 40 cm2 and plate spacing 1.0 mm is charged to potential difference 600V. Find (a) the capacitance and (b) The energy stored

Chapter 6 Solutions

ENGINEERING CIRCUIT ANALYSIS ACCESS >I<

Ch. 6 - For the circuit in Fig. 6.40, find the values of...Ch. 6 - (a) Design a circuit which converts a voltage...Ch. 6 - Prob. 6ECh. 6 - For the circuit of Fig. 6.40, R1 = RL = 50 ....Ch. 6 - Prob. 8ECh. 6 - (a) Design a circuit using only a single op amp...Ch. 6 - Prob. 11ECh. 6 - Determine the output voltage v0 and the current...Ch. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Consider the amplifier circuit shown in Fig. 6.46....Ch. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Prob. 20ECh. 6 - Referring to Fig. 6.49, sketch vout as a function...Ch. 6 - Repeat Exercise 21 using a parameter sweep in...Ch. 6 - Obtain an expression for vout as labeled in the...Ch. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - Prob. 26ECh. 6 - Prob. 27ECh. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - Prob. 30ECh. 6 - Prob. 31ECh. 6 - Determine the value of Vout for the circuit in...Ch. 6 - Calculate V0 for the circuit in Fig. 6.55. FIGURE...Ch. 6 - Prob. 34ECh. 6 - The temperature alarm circuit in Fig. 6.56...Ch. 6 - Prob. 36ECh. 6 - For the circuit depicted in Fig. 6.57, sketch the...Ch. 6 - For the circuit depicted in Fig. 6.58, (a) sketch...Ch. 6 - For the circuit depicted in Fig. 6.59, sketch the...Ch. 6 - In digital logic applications, a +5 V signal...Ch. 6 - Using the temperature sensor in the circuit in...Ch. 6 - Examine the comparator Schmitt trigger circuit in...Ch. 6 - Design the circuit values for the single supply...Ch. 6 - For the instrumentation amplifier shown in Fig....Ch. 6 - A common application for instrumentation...Ch. 6 - (a) Employ the parameters listed in Table 6.3 for...Ch. 6 - Prob. 49ECh. 6 - For the circuit of Fig. 6.62, calculate the...Ch. 6 - Prob. 51ECh. 6 - FIGURE 6.63 (a) For the circuit of Fig. 6.63, if...Ch. 6 - The difference amplifier circuit in Fig. 6.32 has...Ch. 6 - Prob. 55ECh. 6 - Prob. 56ECh. 6 - Prob. 57ECh. 6 - Prob. 58ECh. 6 - Prob. 59ECh. 6 - Prob. 60ECh. 6 - A fountain outside a certain office building is...Ch. 6 - For the circuit of Fig. 6.44, let all resistor...
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY