GEN, ORG & BIOL CHEM: CUSTOM SSC
GEN, ORG & BIOL CHEM: CUSTOM SSC
5th Edition
ISBN: 9781307274448
Author: SMITH
Publisher: MCG CUSTOM
Question
Book Icon
Chapter 6, Problem 6.45P

(a)

Interpretation Introduction

Interpretation:

Calculate values of Gl and Gv for saturated liquid and vapor at 1000kPa . Comment whether these two have same value or not.

Concept Introduction:

The Gibbs free energy is calculated as:

  G=HTS

(a)

Expert Solution
Check Mark

Answer to Problem 6.45P

  Gl=206.08Jgm

  Gv=206.10Jgm

Explanation of Solution

Given information:

It is given that pressure is P=1000kPa and steam is saturated.

From steam tables of saturated steam in Appendix E, table E.1

At pressure P=1000kPa

Since, pressure P=1000kPa lies in between pressures 957.36kPa and 1002.7kPa with temperatures 451.15K and 453.15K, with enthalpies of saturated vapor are Hvap=2774.5Jgm and Hvap=2776.3Jgm, enthalpies of saturated liquid Hliq=754.3Jgm and Hliq=763.1Jgm, with entropies of saturated vapor are Svap=6.5979JgmK and Svap=6.5819JgmK, entropies of saturated liquid are Sliq=2.1199JgmK and Sliq=2.1393JgmK .

From linear interpolation, if M is the function of a single independent variable X then the value of M at X is intermediate between two given values, M1 at X1 and M2 at X2

Temperature corresponding to P=1000kPa

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2T=(1002.7kPa1000kPa1002.7kPa957.36kPa)×451.15K+(1000kPa957.36kPa1002.7kPa957.36kPa)×453.15KT=453.03K

Enthalpy of saturated liquid and entropy of saturated liquid and vapor is

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hvap=(1002.7kPa1000kPa1002.7kPa957.36kPa)×2774.5Jgm+(1000kPa957.36kPa1002.7kPa957.36kPa)×2776.3JgmHvap=2776.19Jgm

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hliq=(1002.7kPa1000kPa1002.7kPa957.36kPa)×754.3Jgm+(1000kPa957.36kPa1002.7kPa957.36kPa)×763.1JgmHliq=762.58Jgm

Entropy of saturated liquid and entropy of saturated liquid and vapor is

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Sliq=(1002.7kPa1000kPa1002.7kPa957.36kPa)×2.1199JgmK+(1000kPa957.36kPa1002.7kPa957.36kPa)×2.1393JgmKSliq=2.1382JgmK

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2SVap=(1002.7kPa1000kPa1002.7kPa957.36kPa)×6.5979JgmK+(1000kPa957.36kPa1002.7kPa957.36kPa)×6.5819JgmKSVap=6.583JgmK

So,

  Gl=HlTSlGl=762.58Jgm453.03K×2.1382JgmKGl=206.08Jgm

And

  Gvap=HvapTSvapGv=2776.19Jgm453.03K×6.583JgmKGv=206.10Jgm

Both values of Gl and Gv for saturated liquid and vapor at 1000kPa are same.

(b)

Interpretation Introduction

Interpretation:

Calculate values for ΔHlvT and ΔSlv at 1000kPa . Comment whether these two have same value or not.

Concept Introduction:

The change in enthalpy and entropy in ideal gas is defined as:

  ΔHlv=HvHl

And

  ΔSlv=SvSl

(b)

Expert Solution
Check Mark

Answer to Problem 6.45P

  ΔHlvT=4.445JgmK

  ΔSlv=4.445JgmK

Explanation of Solution

From subpart (a), values of enthalpies of saturated vapor and liquid as well as values of entropies of saturated vapor and liquid are:

Hl=762.58Jgm, Sl=2.1382JgmK, Hvap=2776.19Jgm and Svap=6.583JgmK

And temperature is:

  T=453.03K

So,

  ΔHlvT=HvHlTΔHlvT=2776.19Jgm762.58Jgm453.03KΔHlvT=4.445JgmK

And

  ΔSlv=SvSlΔSlv=6.583JgmK2.1382JgmKΔSlv=4.445JgmK

Both values of ΔHlvT and ΔSlv for saturated liquid and vapor at 1000kPa are same.

(c)

Interpretation Introduction

Interpretation:

Calculate values for VR, HR and SR for saturated vapor at 1000kPa . and compare the values with suitable generalized correlation.

Concept Introduction:

The residual properties VR is calculated as:

  VR=VVig=VRTP

The residual properties HR is calculated as:

  HR=HHig

The residual properties SR is calculated as:

  SR=SSig

(c)

Expert Solution
Check Mark

Answer to Problem 6.45P

  VR=14.742cm3gm

  HR=64.96Jgm

  SR=0.109JgmK

Explanation of Solution

At 1000kPa, for saturated vapor

H=2776.19Jgm and S=6.583JgmK, T=453.03K

Vat 957.36kPa=202.5cm3gm, Vat 1002.7kPa=193.8cm3gm

So,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2V=(1002.7kPa1000kPa1002.7kPa957.36kPa)×202.5cm3gm+(1000kPa957.36kPa1002.7kPa957.36kPa)×193.8cm3gmV=194.32cm3gm

Now, for the hypothetical ideal gas values of volume, enthalpy and entropy at same temperature and pressure, it cannot find using steam table because steam tables only give values of real gases not ideal gases. However, we can make an approximation of low pressure in real gases at the same temperature to convert real gas into ideal one. So, we are considering low pressure or 1kPaand 453.03K . Now from steam tables of superheated steam in Appendix E, table E.2, at 1kPaand 453.03K

Since,

1kPaand 453.03K lies in between temperatures 448.15K and 473.15K, with volumes 206810cm3gm and 218350cm3gm, enthalpies 2831.7Jgm and 2880.1Jgm, entropies 9.8629JgmK and 9.9679JgmK .

Hence from linear interpolation, at 1kPaand 453.03K

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vig=(473.15K453.03K473.15K448.15K)×206810cm3gm+(453.03K448.15K473.15K448.15K)×218350cm3gmVig=209062cm3gm

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hig=(473.15K453.03K473.15K448.15K)×2831.7Jgm+(453.03K448.15K473.15K448.15K)×2880.1JgmHig=2841.15Jgm

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Sig=(473.15K453.03K473.15K448.15K)×9.8629JgmK+(453.03K448.15K473.15K448.15K)×9.9679JgmKSig=9.883JgmK

But we want values of volume, enthalpy and entropy of ideal gas at 1000kPaand 453.03 K, not 1kPaand 453.03K .Since temperature is not changing ( 453.03K ) and hence it is constant so, it is isothermal process and hence

  P1V1=P2V2 is applicable

  1000×V1=1×209062cm3gmVig=209.062cm3gm

And

Enthalpy of ideal gas is defined as:

  ΔH=RT0TCPigRdT

Which is not the function of pressure, so enthalpy of ideal gas at 1000kPaand 498.15 K is same as enthalpy of ideal gas at 1kPaand 453.03K and hence,

  Hig=2841.15Jgm

Now,

For entropy we know that

  dSig=CPigdTTRdPP

Since temperature s constant so first term at right hand side will be zero and hence,

  dSig=RdPPΔSig=RP1P2dPP=RlnP2P1ΔSig=8.314Jmol K×1mol18gm×ln10001ΔSig=3.191JgmKS2igS1ig=3.191JgmK

  S2ig=S1ig3.191JgmK

  S2ig=9.883JgmK3.191JgmK=6.692JgmK

So,

Residual properties are:

  VR=VVig

  VR=194.32cm3gm209.062cm3gmVR=14.742cm3gm

And

  HR=HHigHR=2776.19Jgm2841.15JgmHR=64.96Jgm

And

  SR=SSigSR=6.583JgmK6.692JgmKSR=0.109JgmK

Now calculations of residual properties of volume, enthalpy and entropy for saturated vapor from generalized correlations are given below,

VR=RTP(Z1)

                      ....(1a)

Where, Z=1+B0PrTr+ωB1PrTr

                      ....(1b)

HRRTC=HRB(Tr,Pr,ω)

                      ....(2a)

Where, HRB(Tr,Pr,ω)=HRRTC=Pr[B0TrdB0dTr+ω(B1TrdB1dTr)]

                      ....(2b)

And S2RR=SRB(Tr,Pr,ω)

                      ....(3a)

Where SRB(Tr,Pr,ω)=SRR=Pr[dB0dTr+ωdB1dTr]

                      ....(3b)

Properties of pure species of steam are given in Table B.1 Appendix B as water,

  ω=0.345,TC=647.1K,PC=220.55bar

  Tr=TTcTr=453.03K647.1K=0.7

  Pr=PPcPr=1000kPa×1bar100kPa220.55bar=0.0453

So,

  B0=0.0830.422Tr1.6B0=0.0830.4220.71.6B0=0.664

And

  B1=0.1390.172Tr4.2B1=0.1390.1720.74.2B1=0.63

For differentiative terms in equation (2b) and (3b),

  B0=0.0830.422Tr1.6dB0dTr=1.6×0.422Tr2.6=1.6×0.4220.72.6=1.707

And,

  B1=0.1390.172Tr4.2dB1dTr=4.2×0.172Tr5.2=4.2×0.1720.75.2=4.616

For residual volume calculations, from equation (1b)

  Z=1+B0PrTr+ωB1PrTrZ=1+(0.664)×0.04530.7+0.345×(0.63)×0.04530.7Z=0.943

So, from equation (1a)

  VR=RTP(Z1)VR=8.314kPa lmol K×453.03K1000kPa×1000cm31l×1mol18gm(0.9431)VR=11.93cm3gm

For residual enthalpy calculations, from equation (2b)

  HRB(Tr,Pr,ω)=HRRTC=Pr×[B0TrdB0dTr+ω(B1Tr d B 1 d T r )]HRRTC=0.0453×[0.6640.7×1.707+0.345×(0.630.7×4.616)]HRB(Tr,Pr,ω)=HRRTC=0.1445

So, from equation (2a)

  HRRTC=HRB(Tr,Pr,ω)HR=RTC×HRB(Tr,Pr,ω)HR=8.314Jmol K×647.1K×1mol18gm×0.1445HR=43.18Jgm

For residual entropy calculations, from equation (3b)

  SRB(Tr,Pr,ω)=SRR=Pr[dB0dTr+ωdB1dTr]SRR=0.0453×[1.707+0.345×(4.616)]SRB(Tr,Pr,ω)=SRTC=0.1495

So, from equation (3a)

  SRR=SRB(Tr,Pr,ω)SR=R×SRB(Tr,Pr,ω)SR=8.314Jmol K×1mol18gm×0.1495SR=0.069JgmK

Results do not agree but approximately they do agree.

(d)

Interpretation Introduction

Interpretation:

Calculate values for dPsatdT at 1000kPa and apply the Clapeyron equation to evaluate ΔSlv at 1000kPa . Comment whether results follow steam table values or not.

Concept Introduction:

First draw a graph between lnP and 1T, find its slope then calculate the dPsatdT from slope.

The Clapeyron equation is:

  dPsatdT=ΔHlvTΔVlv

(d)

Expert Solution
Check Mark

Answer to Problem 6.45P

  ΔSlv=4.0JgmK

Explanation of Solution

From saturated steam table in Appendix E, table E.2

  Psat(kPa)T(K)957.36451.151000453.031002.7453.15

Now, draw a graph between lnP and 1T

GEN, ORG & BIOL CHEM: CUSTOM SSC, Chapter 6, Problem 6.45P

Slope of the graph from equation of graph is 0.023

Or,

  slope=dlnPsatd(1/T)=4.2416×1103=1Psat×T21×dPsatdT

So,

  dPsatdT=slope×PsatT2dPsatdT=4241.6×-1000kPa453.032KdPsatdT=20.67

Also,

Volume of saturated liquid and entropy of saturated liquid and vapor at pressure P=1000kPa from steam tables of saturated steam in Appendix E, table E.1

Since, pressure P=1000kPa lies in between pressures 957.36kPa and 1002.7kPa with volume of saturated vapor are Vvap=202.5cm3gm and Vvap=193.8cm3gm, and volume of saturated liquid are Vliq=1.125cm3gm and Vliq=1.128cm3gm, Hence from linear interpolation

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vvap=(1002.7kPa1000kPa1002.7kPa957.36kPa)×202.5cm3gm+(1000kPa957.36kPa1002.7kPa957.36kPa)×193.8cm3gmVvap=194.31cm3gm

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vliq=(1002.7kPa1000kPa1002.7kPa957.36kPa)×1.125cm3gm+(1000kPa957.36kPa1002.7kPa957.36kPa)×1.128cm3gmVliq=1.1278cm3gm

So,

  ΔVlv=VvapVliqΔVlv=194.31cm3gm1.1278cm3gmΔVlv=193.1822cm3gm

Now from Clapeyron equation,

  dPsatdT=ΔHlvTΔVlvSince, ΔSlv=ΔHlvTdPsatdT=ΔSlvΔVlvΔSlv=ΔVlvdPsatdTΔSlv=193.1822cm3gm×20.67kPaK×1m31003cm3×1000Pa1kPaΔSlv=4JgmK

The value of ΔSlv at 1000kPa from steam table is, take reference of subpart (b) for the value of ΔSlv is,

  ΔSlv=4.445JgmK

So, the results approximately match with each other.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

GEN, ORG & BIOL CHEM: CUSTOM SSC

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The