Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)
2nd Edition
ISBN: 9780393655551
Author: KARTY, Joel
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 6, Problem 6.9P
Interpretation Introduction

(a)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, water is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second), Chapter 6, Problem 6.9P , additional homework tip  1

Water, H2O (pKa = 15.7), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, H2O, is on the reactant side. HCC:Θ does not change the properties of the water. Therefore, water, H2O, is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(b)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, ethanol is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second), Chapter 6, Problem 6.9P , additional homework tip  2

Ethanol, CH3CH2OH (pKa = 16), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, CH3CH2OH, is on the reactant side. HCC:Θ does not change the properties of ethanol. Therefore, ethanol, CH3CH2OH, is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(c)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, ethanamide is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second), Chapter 6, Problem 6.9P , additional homework tip  3

Ethanamide, CH3CONH2 (pKa = 17), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, CH3CONH2, is on the reactant side. HCC:Θ does not change the properties of ethanamide. Therefore, Ethanamide (CH3CONH2) is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(d)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, CH3SOCH3 is a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second), Chapter 6, Problem 6.9P , additional homework tip  4

Acetylene, HCCH (pKa = 25) is a stronger acid than dimethyl sulfoxide (CH3SOCH3) (pKa = 35). The reactant side of the reaction is most favored because the stronger acid, HCCH, is on the product side. HCC:Θ changes the properties of dimethyl sulfoxide. Therefore, dimethyl sulfoxide, CH3SOCH3, is a suitable solvent for HCC:Θ because the equilibrium lies to the reactant side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(e)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, CH3CH2OCH2CH3 is a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second), Chapter 6, Problem 6.9P , additional homework tip  5

Acetylene, HCCH (pKa = 25), is a stronger acid than diethyl ether (CH3CH2OCH2CH3) (pKa = 45). The reactant side of the reaction is most favored because the stronger acid, HCCH, is on the product side. HCC:Θ changes the properties of diethyl ether. Therefore, diethyl ether, CH3CH2OCH2CH3, is a suitable solvent for HCC:Θ because the equilibrium lies to the reactant side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

Organic Chemistry: Principles And Mechanisms: Study Guide/solutions Manual (second)

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.1YTCh. 6 - Prob. 6.2YTCh. 6 - Prob. 6.3YTCh. 6 - Prob. 6.4YTCh. 6 - Prob. 6.5YTCh. 6 - Prob. 6.6YTCh. 6 - Prob. 6.7YTCh. 6 - Prob. 6.8YTCh. 6 - Prob. 6.9YTCh. 6 - Prob. 6.10YTCh. 6 - Prob. 6.11YTCh. 6 - Prob. 6.12YTCh. 6 - Prob. 6.13YTCh. 6 - Prob. 6.14YTCh. 6 - Prob. 6.15YTCh. 6 - Prob. 6.16YTCh. 6 - Prob. 6.17YTCh. 6 - Prob. 6.18YTCh. 6 - Prob. 6.19YTCh. 6 - Prob. 6.20YT
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY