PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
Question
Book Icon
Chapter 6, Problem 6B.2BE

(i)

Interpretation Introduction

Interpretation:

Under the given conditions, the standard Gibbs energy of reaction and equilibrium constant at temperature 25οC has to be calculated.

Concept introduction:

The Gibbs free energy is the energy associated with the chemical reaction that is used to describe whether a chemical reaction is spontaneous or not.  If change in Gibbs free energy is negative then the process is said to be spontaneous otherwise non-spontaneous.  The standard Gibbs energy of reaction is measured at standard conditions.  Equilibrium constant is the ratio of concentrations of products to the concentrations of reactants at equilibrium.

(i)

Expert Solution
Check Mark

Answer to Problem 6B.2BE

The standard Gibbs free energy and equilibrium constant at temperature 298K are -187944.04Jmol-1_ and 8.47×1032_ respectively.

Explanation of Solution

The standard Gibbs energy of reaction is expressed as,

  ΔrGο=ΔrHοTΔrSο                                                                                   (1)

Where,

  • ΔrGο is the standard Gibbs energy of reaction.
  • ΔrHο is the standard enthalpy of reaction.
  • ΔrSο is the standard entropy of reaction.
  • T is the standard temperature.

Rearrange the equation (1) to calculate the standard entropy of formation of CHCl3(l).

  ΔfSο=ΔfHοΔfGοT                                                                                    (2)

At 298.15K, it is given that,

The standard Gibbs energy of formation of CHCl3(l) is 73.7kJmol1.

The standard enthalpy of formation of CHCl3(l) is 134.1kJmol1.

The conversion of kJmol1 to Jmol1 is done as,

  1kJmol1=103Jmol1

Therefore, the conversion of 73.7kJmol1 to Jmol1 is done as,

  73.7kJmol1=73.7×103Jmol1=73700Jmol1

Similarly, the conversion of 134.1kJmol1 to Jmol1 is done as,

  134.1kJmol1=134.1×103Jmol1=134100Jmol1

Substitute the values of ΔrGο, ΔrHο and T in equation (2).

  ΔfSο=134100Jmol1(73700Jmol1)298.15K=60400298.15JK1mol1=202.58JK1mol1

Therefore, the standard entropy of formation of CHCl3(l) is 202.58JK1mol1.

The given reaction is,

  CH4(g)+3Cl2(g)CHCl3(l)+3HCl(g)

The standard enthalpy (ΔrHο) for this chemical reaction is expressed as,

  ΔrHο=(ΔfHCHCl3(l)ο+3ΔfHHCl(g)οΔfHCH4(g)ο3ΔfHCl2(g)ο)                           (3)

It is given that,

The temperature is 25οC.

The standard enthalpy of formation of CH4(g) is 74.81kJmol1.

The standard enthalpy of formation of Cl2(g) is 0kJmol1.

The standard enthalpy of formation of CHCl3(l) is 134.1kJmol1.

The standard enthalpy of formation of HCl(g) is 92.31kJmol1.

Celsius is converted to Kelvin using the equation given below as,

    T(K)=T(°C)+273.15

Substitute the temperature values in the above equation as follows.

    T(K)=T(°C)+273.15=25+273.15=298.15K

Substitute the values of standard enthalpy of formation of CH4(g), Cl2(g), CHCl3(l) and HCl(g) in equation (3).

  ΔrHο=(134.1kJmol1+3(92.31kJmol1)(74.81kJmol1)3(0kJmol1))=(411.03kJmol1+74.81kJmol1)=336.22kJmol1

The conversion of kJmol1 to Jmol1 is done as,

  1kJmol1=103Jmol1

Therefore, the conversion of 336.22kJmol184.28kJmol1 to Jmol1 is done as,

  336.22kJmol1=336.22×103Jmol1=336220Jmol1

The standard entropy of the given chemical reaction is calculated as,

  ΔrSο=(ΔSCHCl3(l)ο+3ΔSHCl(g)οΔSCH4(g)ο3ΔSCl2(g)ο)                                       (4)

It is given that,

The standard entropy for CHCl3(l) is 202.58JK1mol1.

The standard entropy for CH4(g) is 186.26JK1mol1.

The standard entropy for Cl2(g) is 223.07JK1mol1.

The standard entropy for HCl(g) is 186.91JK1mol1.

Substitute the values of standard entropy of CHCl3(l), CH4(g), Cl2(g) and HCl(g) in equation (4).

  ΔrSο=(202.58JK1mol1+(3×186.91JK1mol1)186.26JK1mol1(3×223.07JK1mol1))=497.32JK1mol1

Substitute the values of ΔrHο, ΔrSο and T in equation (1).

  ΔrGο=(336220Jmol1298.15K(497.32JK1mol1))=336220Jmol1+148275.958Jmol1=-187944.04Jmol-1_

Therefore, the standard Gibbs free energy of reaction at temperature 298K is -187944.04Jmol-1_.

The relation between standard Gibbs free energy of reaction and equilibrium constant is expressed as,

  ΔrGο=RTlnKeq                                                                                        (5)

Where,

  • ΔrGο is the standard Gibbs free energy of reaction.
  • Keq is the equilibrium constant.
  • R is gas constant (8.314JK1mol1).
  • T is the temperature.

Rearrange the equation (5) to calculate Keq.

  lnKeq=ΔrGοRTKeq=e(ΔrGοRT)                                                                                             (6)

Substitute the values of ΔrGο, R and T in equation (6).

  Keq=e((187944.04Jmol1)8.314JK1mol1×298.15K)=e(75.82)=8.47×1032_

Therefore, the equilibrium constant at temperature 298K is 8.47×1032_.

(ii)

Interpretation Introduction

Interpretation:

Under the given conditions, the standard Gibbs energy of reaction and equilibrium constant at temperature 50οC has to be calculated.

Concept introduction:

The Gibbs free energy is the energy associated with the chemical reaction that is used to describe whether a chemical reaction is spontaneous or not.  If change in Gibbs free energy is negative then the process is said to be spontaneous otherwise non-spontaneous.  The standard Gibbs energy of reaction is measured at standard conditions.  Equilibrium constant is the ratio of concentrations of products to the concentrations of reactants at equilibrium.

(ii)

Expert Solution
Check Mark

Answer to Problem 6B.2BE

The standard Gibbs free energy and equilibrium constant at temperature 50οC are -175511.04Jmol-1_ and 2.33×1028_ respectively.

Explanation of Solution

The standard Gibbs energy of reaction is expressed as,

  ΔrGο=ΔrHοTΔrSο                                                                                   (1)

Where,

  • ΔrGο is the standard Gibbs energy of reaction.
  • ΔrHο is the standard enthalpy of reaction.
  • ΔrSο is the standard entropy of reaction.
  • T is the standard temperature.

The given reaction is,

  CH4(g)+3Cl2(g)CHCl3(l)+3HCl(g)

The standard enthalpy (ΔrHο) for this chemical reaction is expressed as,

  ΔrHο=(ΔfHCHCl3(l)ο+3ΔfHHCl(g)οΔfHCH4(g)ο3ΔfHCl2(g)ο)                           (2)

It is given that,

The temperature is 50οC.

The standard enthalpy of formation of CH4(g) is 74.81kJmol1.

The standard enthalpy of formation of Cl2(g) is 0kJmol1.

The standard enthalpy of formation of CHCl3(l) is 134.1kJmol1.

The standard enthalpy of formation of HCl(g) is 92.31kJmol1.

Celsius is converted to Kelvin using the equation given below as,

    T(K)=T(°C)+273.15

Substitute the temperature values in the above equation as follows.

    T(K)=T(°C)+273.15=50+273.15=323.15K

Substitute the values of standard enthalpy of formation of CH4(g), Cl2(g), CHCl3(l) and HCl(g) in equation (2).

  ΔrHο=(134.1kJmol1+3(92.31kJmol1)(74.81kJmol1)3(0kJmol1))=(411.03kJmol1+74.81kJmol1)=336.22kJmol1

The conversion of kJmol1 to Jmol1 is done as,

  1kJmol1=103Jmol1

Therefore, the conversion of 336.22kJmol184.28kJmol1 to Jmol1 is done as,

  336.22kJmol1=336.22×103Jmol1=336220Jmol1

The standard entropy of the given chemical reaction is calculated as,

  ΔrSο=(ΔSCHCl3(l)ο+3ΔSHCl(g)οΔSCH4(g)ο3ΔSCl2(g)ο)                                       (3)

It is given that,

The standard entropy for CHCl3(l) is 202.58JK1mol1.

The standard entropy for CH4(g) is 186.26JK1mol1.

The standard entropy for Cl2(g) is 223.07JK1mol1.

The standard entropy for HCl(g) is 186.91JK1mol1.

Substitute the values of standard entropy of CHCl3(l), CH4(g), Cl2(g) and HCl(g) in equation (3).

  ΔrSο=(202.58JK1mol1+(3×186.91JK1mol1)186.26JK1mol13(223.07JK1mol1))=497.32JK1mol1

Substitute the values of ΔrHο, ΔrSο and T in equation (1).

  ΔrGο=(336220Jmol1323.15K(497.32JK1mol1))=336220Jmol1+160708.958Jmol1=-175511.04Jmol-1_

Therefore, the standard Gibbs free energy of reaction at temperature 50οC is -175511.04Jmol-1_.

The relation between standard Gibbs free energy of reaction and equilibrium constant is expressed as,

  ΔrGο=RTlnKeq                                                                                        (4)

Where,

  • ΔrGο is the standard Gibbs free energy of reaction.
  • Keq is the equilibrium constant.
  • R is gas constant (8.314JK1mol1).
  • T is the temperature.

Rearrange the equation (4) to calculate Keq.

  lnKeq=ΔrGοRTKeq=e(ΔrGοRT)                                                                                             (5)

Substitute the values of ΔrGο, R and T in equation (5).

  Keq=e((175511.04Jmol1)8.314JK1mol1×323.15K)=e(65.32)=2.33×1028_

Therefore, the equilibrium constant at temperature 50οC is 2.33×1028_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 6 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Ch. 6 - Prob. 6A.2BECh. 6 - Prob. 6A.3AECh. 6 - Prob. 6A.3BECh. 6 - Prob. 6A.4AECh. 6 - Prob. 6A.4BECh. 6 - Prob. 6A.5AECh. 6 - Prob. 6A.5BECh. 6 - Prob. 6A.6AECh. 6 - Prob. 6A.6BECh. 6 - Prob. 6A.7AECh. 6 - Prob. 6A.7BECh. 6 - Prob. 6A.8AECh. 6 - Prob. 6A.8BECh. 6 - Prob. 6A.9AECh. 6 - Prob. 6A.9BECh. 6 - Prob. 6A.10AECh. 6 - Prob. 6A.10BECh. 6 - Prob. 6A.11AECh. 6 - Prob. 6A.11BECh. 6 - Prob. 6A.12AECh. 6 - Prob. 6A.12BECh. 6 - Prob. 6A.13AECh. 6 - Prob. 6A.13BECh. 6 - Prob. 6A.14AECh. 6 - Prob. 6A.14BECh. 6 - Prob. 6A.1PCh. 6 - Prob. 6A.2PCh. 6 - Prob. 6A.3PCh. 6 - Prob. 6A.4PCh. 6 - Prob. 6A.5PCh. 6 - Prob. 6A.6PCh. 6 - Prob. 6B.1DQCh. 6 - Prob. 6B.2DQCh. 6 - Prob. 6B.3DQCh. 6 - Prob. 6B.1AECh. 6 - Prob. 6B.1BECh. 6 - Prob. 6B.2AECh. 6 - Prob. 6B.2BECh. 6 - Prob. 6B.3AECh. 6 - Prob. 6B.3BECh. 6 - Prob. 6B.4AECh. 6 - Prob. 6B.4BECh. 6 - Prob. 6B.5AECh. 6 - Prob. 6B.5BECh. 6 - Prob. 6B.6AECh. 6 - Prob. 6B.6BECh. 6 - Prob. 6B.7AECh. 6 - Prob. 6B.7BECh. 6 - Prob. 6B.8AECh. 6 - Prob. 6B.8BECh. 6 - Prob. 6B.1PCh. 6 - Prob. 6B.2PCh. 6 - Prob. 6B.3PCh. 6 - Prob. 6B.4PCh. 6 - Prob. 6B.5PCh. 6 - Prob. 6B.6PCh. 6 - Prob. 6B.7PCh. 6 - Prob. 6B.8PCh. 6 - Prob. 6B.9PCh. 6 - Prob. 6B.10PCh. 6 - Prob. 6B.11PCh. 6 - Prob. 6B.12PCh. 6 - Prob. 6C.1DQCh. 6 - Prob. 6C.2DQCh. 6 - Prob. 6C.3DQCh. 6 - Prob. 6C.4DQCh. 6 - Prob. 6C.5DQCh. 6 - Prob. 6C.1AECh. 6 - Prob. 6C.1BECh. 6 - Prob. 6C.2AECh. 6 - Prob. 6C.2BECh. 6 - Prob. 6C.3AECh. 6 - Prob. 6C.3BECh. 6 - Prob. 6C.4AECh. 6 - Prob. 6C.4BECh. 6 - Prob. 6C.5AECh. 6 - Prob. 6C.5BECh. 6 - Prob. 6C.1PCh. 6 - Prob. 6C.2PCh. 6 - Prob. 6C.3PCh. 6 - Prob. 6C.4PCh. 6 - Prob. 6D.1DQCh. 6 - Prob. 6D.2DQCh. 6 - Prob. 6D.1AECh. 6 - Prob. 6D.1BECh. 6 - Prob. 6D.2AECh. 6 - Prob. 6D.2BECh. 6 - Prob. 6D.3AECh. 6 - Prob. 6D.3BECh. 6 - Prob. 6D.4AECh. 6 - Prob. 6D.4BECh. 6 - Prob. 6D.1PCh. 6 - Prob. 6D.2PCh. 6 - Prob. 6D.3PCh. 6 - Prob. 6D.4PCh. 6 - Prob. 6D.5PCh. 6 - Prob. 6D.6PCh. 6 - Prob. 6.1IACh. 6 - Prob. 6.2IACh. 6 - Prob. 6.3IACh. 6 - Prob. 6.4IACh. 6 - Prob. 6.7IACh. 6 - Prob. 6.8IACh. 6 - Prob. 6.10IACh. 6 - Prob. 6.12IA
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY