21st Century Astronomy (sixth Edition)
21st Century Astronomy (sixth Edition)
6th Edition
ISBN: 9780393675504
Author: Laura Kay, Stacy Palen, George Blumenthal
Publisher: W. W. Norton & Company
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 38QP
To determine

Compare the duration of planet transits in figure 7.20, find the longest duration of the outermost planet.

Blurred answer
Students have asked these similar questions
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…
Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days. select units A
1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make. 2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument. 3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY