Physics Fundamentals
Physics Fundamentals
2nd Edition
ISBN: 9780971313453
Author: Vincent P. Coletta
Publisher: PHYSICS CURRICULUM+INSTRUCT.INC.
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 63P

(a)

To determine

The escape velocity for the moon.

(a)

Expert Solution
Check Mark

Answer to Problem 63P

The escape velocity of Moon is 2.38 km/s.

Explanation of Solution

Formula Used:

The escape velocity of a particle to escape the gravitational field of the Moon is given as

  v=2GMR

Where, G is the gravitational constant of Moon is 6.67×1011 Nm2kg2 , 1737.1 km is the radius of Moon, mass of Moon is 7.342×1022kg

Calculation:

Substitute the values:

  v= 2GMR= 2×6.67× 10 11 ×7.342× 10 22 1737.1× 10 3 =2.38 km/s

Conclusion:

The escape velocity of Moon is 2.38 km/s.

(b)

To determine

The velocity of the particle in the earth’s environment.

(b)

Expert Solution
Check Mark

Answer to Problem 63P

The velocity withwhich particle will enter the Earth’s surface is 1.85×106m/sec

Explanation of Solution

Given Data:

The energy conservation is given as

  Initial Total Energy==Final Total EnergyP.Ei+K.Ei=P.Ef+K.Ef(1)

Particle at moon starts with a K.Ei with an escape velocity vm= 2G M m R m ,where G is the gravitational constant whose value is 6.67×1011 Nm2kg-2 , Mm is the mass of the moon and Rm is the radius of the moon, vm is the escape velocity from the moon which is the initial velocity of the particle.When particle is at the surface of moon, then the potential energy of particle and Earth is neglected as it is far from the Earth. Therefore, P.Ei=0 . As the particles reaches the Earth’s surface, the particle and earth potential energy is final and given as P.Ef=GMEmpRE , ME and RE is the mass and radius of the Earth respectively and mp is the mass of the particle.

Formula Used:

Using equation 1, write

  K.Ei=P.Ef+K.Ef12mpvi2=GMEmpRE+12mpvf2

Putting the initial velocity equal to the escape velocity from moon, we can write:

  12mp( 2G M m R m )2=GMEmpRE+12mpvf2

  12mp2GMmRm=GMEmpRE+12mpvf2

Solving for final velocity vf

  vf=G( M m R m + M E R E )

Calculation:

  vf=6.67×1011( 7.342× 10 22 1737.1× 10 3 + 5.972× 10 22 6371× 10 3 )

  vf=1.85×103m/s

Conclusion:

The velocity withwhich particle will enter the Earth’s surface is 1.85×103m/s

(c)

To determine

The ratio of final to initial kinetic energy of the particle.

(c)

Expert Solution
Check Mark

Answer to Problem 63P

The ratio of final to initial kinetic energy of the particle is 24.86.

Explanation of Solution

Given data:

Particle at moon starts with a K.Ei with a escape velocity vm= 2G M m R m ,where G is thegravitational constant whose value is 6.67×1011 Nm2kg-2 . Mm is the mass of the moon and Rm radius of the moon, vm is the escape velocity from the moon which is the initial velocity of the particle.

Formula Used:

When particle is at the surface of moon, then the potential energy of particle and Earth is neglected as it is far from the Earth. The velocity with which particle will enter the Earth’s surface is vf=G( M m R m + M E R E )

Ratio is given as below:

  K.EfK.Ei=12mpvf212mpvi2=vf2vi2

  K.EfK.Ei=vf2vi2=G( M m R m + M E R E ) 2G M m R m K.EfK.Ei=( M m R m + M E R E )×Rm2Mm

  K.EfK.Ei=(1+MERERmMm)×12

Calculation:

Putting the values of radius and mass of earth and moon, we get,

  K.EfK.Ei=(1+( 5.972× 10 24 6371 × 1737 3.342× 10 22 ))×12K.EfK.Ei=24.86

Conclusion:

The ratio of final to initial kinetic energy of the particle is 24.86 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Find the minimum initial speed of a projectile in order for it to reach a height of 2145 km above the surface of the earth
A 1000 kg spacecraft is approaching Jupiter (which is at the origin). The position of the spacecraft is given by the vector RSC = (0.0,-2.533) x 106km. The velocity is given by VSC= (+6.00, +8.00) km/sec. The mass of Jupiter, (MJ=318 MEarth) and MEarth = 5.97 x 1024 kg. A) What is the potential and kinetic energy of the spacecraft (write each to 3 sig figs.) What is the total energy of the spacecraft? Call the total energy Ei. B) Can it escape Jupiter? Justify your answer. C) What is the angular momentum of the spacecraft around Jupiter? Call this Li.
A stationary particle exclude into two particles of masses m1 and m2 which move in opposite direction with velocities v1 and v2 the ratio of their kinetic energies will be E1/E2?

Chapter 7 Solutions

Physics Fundamentals

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY