(a) Interpretation: The total energy output must be calculated for the blackbody heated at 4500 K. Concept introduction: Stefan’s law essentially states that the total quantity of heat energy released by a perfect blackbody per unit area per second is directly proportional to the absolute temperature’s fourth power of its surface given by the equation- E t = α T 4 Wein’s displacement Law which states that the maximum wavelength in micrometers for the radiations of the blackbody is given by: λ m a x T = 2.90 × 10 3 Where, T = temperature in Kelvin λ m a x = maximum wavelength

BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213
BuyFind

Principles of Instrumental Analysis

7th Edition
Douglas A. Skoog + 2 others
Publisher: Cengage Learning
ISBN: 9781305577213

Solutions

Chapter 7, Problem 7.4QAP
Interpretation Introduction

(a)

Interpretation:

The total energy output must be calculated for the blackbody heated at 4500 K.

Concept introduction:

Stefan’s law essentially states that the total quantity of heat energy released by a perfect blackbody per unit area per second is directly proportional to the absolute temperature’s fourth power of its surface given by the equation-

Et= αT4

Wein’s displacement Law which states that the maximum wavelength in micrometers for the radiations of the blackbody is given by:

λmaxT = 2.90×103

Where,

T = temperature in Kelvin

λmax = maximum wavelength

Interpretation Introduction

(b)

Interpretation:

The total energy output must be calculated for the blackbody heated at 2500 K.

Concept introduction:

Stefan’s law essentially states that the total quantity of heat energy released by a perfect blackbody per unit area per second is directly proportional to the absolute temperature’s fourth power of its surface given by the equation-

Et= αT4

Wein’s displacement Law which states that the maximum wavelength in micrometers for the radiations of the blackbody is given by:

λmaxT = 2.90×103

Where,

T = temperature in Kelvin

λmax = maximum wavelength

Interpretation Introduction

(c)

Interpretation:

The total energy output must be calculated for the blackbody heated at 1250K.

Concept introduction:

Stefan’s law essentially states that the total quantity of heat energy released by a perfect blackbody per unit area per second is directly proportional to the absolute temperature’s fourth power of its surface given by the equation-

Et= αT4

Wein’s displacement Law which states that the maximum wavelength in micrometers for the radiations of the blackbody is given by:

λmaxT = 2.90×103

Where,

T = temperature in Kelvin

λmax = maximum wavelength

Want to see the full answer?

Check out a sample textbook solution.

Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers.