PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
11th Edition
ISBN: 9780198826910
Author: ATKINS
Publisher: Oxford University Press
bartleby

Concept explainers

Question
Book Icon
Chapter 7, Problem 7.5IA

(a)

Interpretation Introduction

Interpretation:

The value of Δx=(x2x2)1/2 and Δpx=(px2px2)1/2 for the ground state of a particle in a box of length L has to be evaluated.  The quantities are to be discussed with reference to the principle of uncertainty.

Concept introduction:

The wave function represents the exact position of the electron in an atom.  The wave function is represented by ψ in the quantum mechanics.  Expectation value is known as the average value of the given operator.

(a)

Expert Solution
Check Mark

Answer to Problem 7.5IA

The value of Δx=(x2x2)1/2 for the ground state of a particle in a box of length L is (L212L22π2)1/2.

The value of Δpx=(px2px2)1/2 for the ground state of a particle in a box of length L is πL.

The value of Δx×Δpx is greater than 2, this proves the principle of uncertainty.

Explanation of Solution

The value of Δx is calculated by the following formula.

    Δx=(x2x2)1/2                                                                                                   (1)

The normalized ground state wavefunction of a particle in a box of length L is shown below.

    ψ=(2L)1/2sin(πxL)

The expectation value of x2 of a particle in a box of length x=0 to x=L is calculated by the following formula.

    x2=0Lψx2ψdx                                                                                                      (2)

Where,

  • ψ is the normalized wave function.
  • ψ is the conjugated complex of the normalized wave function.

The wave function is real.  So, ψ is equal to ψ.

Substitute the value of ψ and ψ in equation (1).

    x2=0L(2/L)1/2sin(πx/L)x2(2/L)1/2sin(πx/L)dx=0L(2/L)x2sin2(πx/L)dx=(2/L)0Lx2sin2(πx/L)dx                                                (3)

The value of 0ax2sin2(kx)dx is a36(a24k18k3)sin(2ka)a4k2cos2ka.

Compare the integral 0ax2sin2(kx)dx with 0Lx2sin2(πx/L)dx the value of a is L and the value of k is (πL).  Therefore, the value of 0Lxsin2(πx/L)dx, using the above integral identity is calculated as shown below.

    0Lx2sin2(πx/L)dx=(L36(L24(π/L)18(π/L)3)sin(2(π/L)L)L4(π/L)2cos2(π/L)L)=(L36(L24(π/L)18(π/L)3)sin(2π)L34π2cos2π)=(L36(L24(π/L)18(π/L)3)(0)L34π2(1))(sin(2π)=0andcos(2π)=1)=L36L34π2

Substitute the value of 0Lx2sin2(πx/L)dx in equation (3).

    x2=(2/L)(L36L34π2)=(2/L)L2(L23L22π2)=(L23L22π2)

Therefore, the value of x2 is (L23L22π2).

The expectation value of x2 of a particle in a box of length in range of x=0 to x=L is calculated by the following formula.

    x2=(0Lψxψdx)2                                                                                                  (4)

Substitute the value of ψ and ψ in equation (1).

    x2=(0L(2/L)1/2sin(πx/L)x(2/L)1/2sin(πx/L)dx)2=(0L(2/L)xsin2(πx/L)dx)2=((2/L)0Lxsin2(πx/L)dx)2                                             (5)

The value of 0axsin2(kx)dx is a2414k(asin(2ka))18k2(cos2ka1).

Compare the integral 0axsin2(kx)dx with 0Lxsin2(πx/L)dx the value of a is L and the value of k is (πL).  Therefore, the value of 0Lxsin2(πx/L)dx, using the above integral identity is calculated as shown below.

    0Lxsin2(πx/L)dx=(L2414×πL(Lsin(2×πL×L))18×(πL)2(cos(2×πL×L)1))=L24L4π(Lsin(2π))L28π2(cos(2π)1)=L24L8π(0)L232π2(11)(sin(2π)=0andcos(2π)=1)=L24

Substitute the value of 0Lxsin2(πx/L)dx in the expectation value of x in equation (5).

    x2=((2/L)(L24))2=(L2)2=L24

Therefore, the value of x2 is L24.

Substitute the value of x2 and x2 in equation (1).

    Δx=((L23L22π2)L24)1/2=(L23L22π2L24)1/2=(L212L22π2)1/2

Hence, the value of Δx=(x2x2)1/2 for the ground state of a particle in a box of length L is (L212L22π2)1/2.

The value of Δpx is calculated by the following formula.

    Δpx=(px2px2)1/2                                                                                             (6)

The expectation value of the momentum of the electron is calculated by the following expression.

    px2=0L(2/L)1/2sin(πx/L)px2(2/L)1/2sin(πx/L)dx=(2/L)0Lsin(πx/L)(iddx)2sin(πx/L)dx(px=iddx)=22i2L0Lsin(πx/L)ddx(ddxsin(πx/L))dx(ddxsinx=cosx)=22L0Lsin(πx/L)(π/L)ddxcos(πx/L)dx(i2=1)

On further solving the above integration,

    px2=22L0Lsin(πx/L)(π/L)(sin(πx/L))ddx(πx/L)dx=22L0Lsin(πx/L)(π/L)sin(πx/L)ddx(πx/L)dx=22L0Lsin(πx/L)(π/L)2sin(πx/L)dx=22L(π/L)20Lsin2(πx/L)dx                                 (7)

The value of 0asin2kxdx is 12a14ksin2ka.

Compare the integral 0Lsin2(πx/L)dx with 0asin2kxdx the value of k is (πL).  Therefore, the value of 0Lsin2(πx/L)dx, using the above integral identity is calculated as shown below.

    0Lsin2(πx/L)dx=12L14(πL)sin2(πL)L=L2L4πsin2π(sin2π=0)=L2

Substitute the value of 0Lsin2(πx/L)dx in equation (7).

    px2=22L(π/L)2L2=2π2L2

Therefore, the value of px2 for the normalized wavefunction (2/L)1/2sin(πx/L) is 2π2L2.

The expectation value of the square of the momentum of the particle is calculated by the following expression.

    px2=(0L(2/L)1/2sin(πx/L)px(2/L)1/2sin(πx/L)dx)2=(2iL0Lsin(πx/L)ddxsin(πx/L)dx)2(p^x=iddx)=(2iL0Lsin(πx/L)cos(πx/L)×ddx(πx/L)dx)2(ddxsinx=cosx)=(2iL0Lsin(πx/L)cos(πx/L)×(π/L)dx)2

The value of 0asinAxcosBxdx is cos(BA)a12(BA)cos(A+B)a12(A+B).

Compare the integral 0Lsin(πx/L)cos(πx/L)dx with 0asinAxcosBxdx the value of a is L and the values of A and B are (πL).  Therefore, the value of 0Lsin(πx/L)cos(πx/L)dx, using the above integral identity is calculated as shown below.

    0Lsin(πx/L)cos(πx/L)dx=cos(((π/L)(π/L))L)12((π/L)(π/L))cos(((π/L)+(π/L))L)12((π/L)+(π/L))=cos(0)12((π/L)(π/L))cos(2π)12((π/L)+(π/L))=112((π/L)(π/L))112(2π/L)(cos0=1andcos2π=1)=0

Substitute the value of 0Lsin(2πx/L)cos(2πx/L)dx in equation (2).

    px2=(2iL×0×(π/L))2=0

Therefore, the value of px2 for the normalized wavefunction (2/L)1/2sin(πx/L) is 0.

Substitute the value of px2 and px2 in equation (7).

    Δpx=(2π2L20)1/2=πL

Hence, the value of Δpx is πL.

The proof of uncertainty principle is shown below.

    Δx×Δpx=(L212L22π2)1/2×πL                                                                                 (8)

The principle of uncertainty states that the product of Δx×Δpx is greater than or equal to 2.  From equation (8) it is clear that the value of Δx×Δpx is greater than 2 because L will be positive.  This proves the principle of uncertainty.

(b)

Interpretation Introduction

Interpretation:

The value of Δx=(x2x2)1/2 and Δpx=(px2px2)1/2 for the ground state of a harmonic oscillator has to be evaluated.  The quantities are to be discussed with reference to the principle of uncertainty.

Concept introduction:

A system that experiences a restoring force when displaced from its equilibrium position is known as the harmonic oscillator.  The restoring force experienced by the system is directly proportional to the displacement.  Masses connected to the spring and the pendulums are the examples of harmonic oscillator.

(b)

Expert Solution
Check Mark

Answer to Problem 7.5IA

The value of Δx=(x2x2)1/2 for the harmonic oscillator is (α2)1/2.

The value of Δpx for simple harmonic oscillator is (2(απ)1/2(π2))1/2.

The value of Δx×Δpx is a positive quantity this proves the principle of uncertainty.

Explanation of Solution

The normalized ground state wavefunction of a harmonic oscillator is shown below.

    ψ=(απ)1/4ex2/2

The expectation value of x2 of a harmonic oscillator is calculated by the following formula.

    x2=+ψx2ψdx                                                                                                     (9)

Where,

  • ψ is the normalized ground state wave function for harmonic oscillator.
  • ψ is the conjugated complex of the normalized wave function.

The wave function is real.  So, ψ is equal to ψ.

Substitute the value of ψ and ψ in equation (9).

    x2=+(απ)1/4ex2/2x2(απ)1/4ex2/2dx=(απ)1/2+ex2/2x2ex2/2dx=(απ)1/2+x2ex2dx                                                                    (10)

The value of +xneax2dx is n+12a(n+12) if n is even.

Compare the integral +x2ex2dx with +xneax2dx the value of a is 1 and the value of n is 2.  Therefore, the value of +x2ex2dx, using the above integral identity is calculated as shown below.

    +x2ex2dx=2+121(2+12)=32=π2

Substitute the value of +x2ex2dx in equation (10).

    x2=(απ)1/2π2=α2

Therefore, the value of x2 is α2.

The expectation value of x2 of a harmonic oscillator is calculated by the following formula.

    x2=(+ψx2ψdx)2                                                                                              (11)

Substitute the value of ψ and ψ in equation (1).

    x2=(+(απ)1/4ex2/2x(απ)1/4ex2/2dx)2=((απ)1/2+ex2/2xex2/2dx)2=((απ)1/2+xex2dx)2                                                                 (12)

The value of +xneax2dx is 0 if n is odd.

Compare the integral +x2ex2dx with +xneax2dx the value of a is 1 and the value of n is 1

Substitute the value of +x2ex2dx in equation (12).

    x2=((απ)1/2×0)2=0

Therefore, the value of x2 is 0.

Substitute the value of x2 and x2 for harmonic oscillator in equation (1).

    Δx=(α20)1/2=(α2)1/2

Hence, the value of Δx=(x2x2)1/2 for the harmonic oscillator is (α2)1/2.

The expectation value of the momentum of harmonic oscillator is calculated by the following expression.

    px2=+(απ)1/4ex2/2px2(απ)1/4ex2/2dx=(απ)1/2+ex2/2(iddx)2ex2/2dx(px=iddx)=(i)2(απ)1/2+ex2/2ddx(ddxex2/2)dx(ddxsinx=cosx)=2(απ)1/2+ex2/2ddx(ex2/2ddx(x2/2))dx(i2=1)

On further solving the above integration,

    px2=2(απ)1/2+ex2/2ddx(ex2/2(x))dx=2(απ)1/2+ex2/2(ex2/2ddx(x)+xddx(ex2/2))dx=2(απ)1/2+ex2/2(ex2/2+xex2/2ddx(x2/2))dx=2(απ)1/2+ex2/2(ex2/2+xex2/2(x))dx                                      (13)

Separate the integrals of equation (13) as shown below.

    px2=2(απ)1/2(+ex2dx+x2ex2dx)                                                               (14)

The value of +xneax2dx is n+12a(n+12) if n is even.

Compare the integral +x2ex2dx with +xneax2dx the value of a is 1 and the value of n is 2.  The value of +x2ex2dx is calculated as shown below.

    +x2ex2dx=2+121(2+12)=32=π2

Therefore, the value of +x2ex2dx is π2.

Compare the integral +x0ex2dx with +xneax2dx the value of a is 1 and the value of n is 0.  The value of +x0ex2dx is calculated as shown below.

    +x0ex2dx=0+121(0+12)=12=π

Therefore, the value of +x0ex2dx is π.

Substitute the value of +x0ex2dx and +x2ex2dx in equation (14).

    px2=2(απ)1/2(ππ2)=2(απ)1/2(π2)

Therefore, the value of px2 for the ground state harmonic oscillator is 2(απ)1/2(π2).

The value of px2 is calculated as shown below.

    px2=(+(απ)1/4ex2/2px(απ)1/4ex2/2dx)2=((απ)1/2+ex2/2(iddx)ex2/2dx)2(px=iddx)=(i)2(απ)(+ex2/2(ddxex2/2)dx)2(ddxsinx=cosx)=2(απ)(+ex2/2(ex2/2ddx(x2/2))dx)2(i2=1)

On further solving the above integration as shown below,

    px2=2(απ)(+ex2(x)dx)2=2(απ)(+ex2xdx)2                                                                     (15)

The value of +xneax2dx is 0 if n is odd.

Compare the integral +xex2dx with +xneax2dx the value of a is 1 and the value of n is 1.  Therefore, the value of +xex2dx is 0.

Substitute the value of +xex2dx in equation (15).

    px2=2(απ)(0)2=0

Therefore, the value of px2 for the harmonic oscillator is 0.

Substitute the value of px2 and px2 in equation (7).

    Δpx=(2(απ)1/2(π2)0)1/2=(2(απ)1/2(π2))1/2=(απ)1/4(π2)1/2

Hence, the value of Δpx for simple harmonic oscillator is (2(απ)1/2(π2))1/2.

The proof of uncertainty principle is shown below.

    Δx×Δpx=(α2)1/2×(απ)1/4(π2)1/2=α(2)1/4                                                             (16)

The principle of uncertainty states that the product of Δx×Δpx is greater than or equal to 2.  From equation (16) it is clear that the value of Δx×Δpx is a positive quantity.  This means that there is some uncertainty in the measurement of change in position and change in momentum simultaneously.  This proves the principle of uncertainty.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)

Ch. 7 - Prob. 7D.1STCh. 7 - Prob. 7E.1STCh. 7 - Prob. 7E.2STCh. 7 - Prob. 7F.1STCh. 7 - Prob. 7A.1DQCh. 7 - Prob. 7A.2DQCh. 7 - Prob. 7A.3DQCh. 7 - Prob. 7A.4DQCh. 7 - Prob. 7A.1AECh. 7 - Prob. 7A.1BECh. 7 - Prob. 7A.2AECh. 7 - Prob. 7A.2BECh. 7 - Prob. 7A.3AECh. 7 - Prob. 7A.3BECh. 7 - Prob. 7A.4AECh. 7 - Prob. 7A.4BECh. 7 - Prob. 7A.5AECh. 7 - Prob. 7A.5BECh. 7 - Prob. 7A.6AECh. 7 - Prob. 7A.6BECh. 7 - Prob. 7A.7AECh. 7 - Prob. 7A.7BECh. 7 - Prob. 7A.8AECh. 7 - Prob. 7A.8BECh. 7 - Prob. 7A.9AECh. 7 - Prob. 7A.9BECh. 7 - Prob. 7A.10AECh. 7 - Prob. 7A.10BECh. 7 - Prob. 7A.11AECh. 7 - Prob. 7A.11BECh. 7 - Prob. 7A.12AECh. 7 - Prob. 7A.12BECh. 7 - Prob. 7A.13AECh. 7 - Prob. 7A.13BECh. 7 - Prob. 7A.1PCh. 7 - Prob. 7A.2PCh. 7 - Prob. 7A.3PCh. 7 - Prob. 7A.4PCh. 7 - Prob. 7A.5PCh. 7 - Prob. 7A.6PCh. 7 - Prob. 7A.7PCh. 7 - Prob. 7A.8PCh. 7 - Prob. 7A.9PCh. 7 - Prob. 7A.10PCh. 7 - Prob. 7B.1DQCh. 7 - Prob. 7B.2DQCh. 7 - Prob. 7B.3DQCh. 7 - Prob. 7B.1AECh. 7 - Prob. 7B.1BECh. 7 - Prob. 7B.2AECh. 7 - Prob. 7B.2BECh. 7 - Prob. 7B.3AECh. 7 - Prob. 7B.3BECh. 7 - Prob. 7B.4AECh. 7 - Prob. 7B.4BECh. 7 - Prob. 7B.5AECh. 7 - Prob. 7B.5BECh. 7 - Prob. 7B.6AECh. 7 - Prob. 7B.6BECh. 7 - Prob. 7B.7AECh. 7 - Prob. 7B.7BECh. 7 - Prob. 7B.8AECh. 7 - Prob. 7B.8BECh. 7 - Prob. 7B.1PCh. 7 - Prob. 7B.2PCh. 7 - Prob. 7B.3PCh. 7 - Prob. 7B.4PCh. 7 - Prob. 7B.5PCh. 7 - Prob. 7B.7PCh. 7 - Prob. 7B.8PCh. 7 - Prob. 7B.9PCh. 7 - Prob. 7B.11PCh. 7 - Prob. 7C.1DQCh. 7 - Prob. 7C.2DQCh. 7 - Prob. 7C.3DQCh. 7 - Prob. 7C.1AECh. 7 - Prob. 7C.1BECh. 7 - Prob. 7C.2AECh. 7 - Prob. 7C.2BECh. 7 - Prob. 7C.3AECh. 7 - Prob. 7C.3BECh. 7 - Prob. 7C.4AECh. 7 - Prob. 7C.4BECh. 7 - Prob. 7C.5AECh. 7 - Prob. 7C.5BECh. 7 - Prob. 7C.6AECh. 7 - Prob. 7C.6BECh. 7 - Prob. 7C.7AECh. 7 - Prob. 7C.7BECh. 7 - Prob. 7C.8AECh. 7 - Prob. 7C.8BECh. 7 - Prob. 7C.9AECh. 7 - Prob. 7C.9BECh. 7 - Prob. 7C.10AECh. 7 - Prob. 7C.10BECh. 7 - Prob. 7C.1PCh. 7 - Prob. 7C.2PCh. 7 - Prob. 7C.3PCh. 7 - Prob. 7C.4PCh. 7 - Prob. 7C.5PCh. 7 - Prob. 7C.6PCh. 7 - Prob. 7C.7PCh. 7 - Prob. 7C.8PCh. 7 - Prob. 7C.9PCh. 7 - Prob. 7C.11PCh. 7 - Prob. 7C.12PCh. 7 - Prob. 7C.13PCh. 7 - Prob. 7C.14PCh. 7 - Prob. 7C.15PCh. 7 - Prob. 7D.1DQCh. 7 - Prob. 7D.2DQCh. 7 - Prob. 7D.3DQCh. 7 - Prob. 7D.1AECh. 7 - Prob. 7D.1BECh. 7 - Prob. 7D.2AECh. 7 - Prob. 7D.2BECh. 7 - Prob. 7D.3AECh. 7 - Prob. 7D.3BECh. 7 - Prob. 7D.4AECh. 7 - Prob. 7D.4BECh. 7 - Prob. 7D.5AECh. 7 - Prob. 7D.5BECh. 7 - Prob. 7D.6AECh. 7 - Prob. 7D.6BECh. 7 - Prob. 7D.7AECh. 7 - Prob. 7D.7BECh. 7 - Prob. 7D.8AECh. 7 - Prob. 7D.8BECh. 7 - Prob. 7D.9AECh. 7 - Prob. 7D.9BECh. 7 - Prob. 7D.10AECh. 7 - Prob. 7D.10BECh. 7 - Prob. 7D.11AECh. 7 - Prob. 7D.11BECh. 7 - Prob. 7D.12AECh. 7 - Prob. 7D.12BECh. 7 - Prob. 7D.13AECh. 7 - Prob. 7D.13BECh. 7 - Prob. 7D.14AECh. 7 - Prob. 7D.14BECh. 7 - Prob. 7D.15AECh. 7 - Prob. 7D.15BECh. 7 - Prob. 7D.1PCh. 7 - Prob. 7D.2PCh. 7 - Prob. 7D.3PCh. 7 - Prob. 7D.4PCh. 7 - Prob. 7D.5PCh. 7 - Prob. 7D.6PCh. 7 - Prob. 7D.7PCh. 7 - Prob. 7D.8PCh. 7 - Prob. 7D.9PCh. 7 - Prob. 7D.11PCh. 7 - Prob. 7D.12PCh. 7 - Prob. 7D.14PCh. 7 - Prob. 7E.1DQCh. 7 - Prob. 7E.2DQCh. 7 - Prob. 7E.3DQCh. 7 - Prob. 7E.1AECh. 7 - Prob. 7E.1BECh. 7 - Prob. 7E.2AECh. 7 - Prob. 7E.2BECh. 7 - Prob. 7E.3AECh. 7 - Prob. 7E.3BECh. 7 - Prob. 7E.4AECh. 7 - Prob. 7E.4BECh. 7 - Prob. 7E.5AECh. 7 - Prob. 7E.5BECh. 7 - Prob. 7E.6AECh. 7 - Prob. 7E.6BECh. 7 - Prob. 7E.7AECh. 7 - Prob. 7E.7BECh. 7 - Prob. 7E.8AECh. 7 - Prob. 7E.8BECh. 7 - Prob. 7E.9AECh. 7 - Prob. 7E.9BECh. 7 - Prob. 7E.1PCh. 7 - Prob. 7E.2PCh. 7 - Prob. 7E.3PCh. 7 - Prob. 7E.4PCh. 7 - Prob. 7E.5PCh. 7 - Prob. 7E.6PCh. 7 - Prob. 7E.7PCh. 7 - Prob. 7E.8PCh. 7 - Prob. 7E.9PCh. 7 - Prob. 7E.12PCh. 7 - Prob. 7E.15PCh. 7 - Prob. 7E.16PCh. 7 - Prob. 7E.17PCh. 7 - Prob. 7F.1DQCh. 7 - Prob. 7F.2DQCh. 7 - Prob. 7F.3DQCh. 7 - Prob. 7F.1AECh. 7 - Prob. 7F.1BECh. 7 - Prob. 7F.2AECh. 7 - Prob. 7F.2BECh. 7 - Prob. 7F.3AECh. 7 - Prob. 7F.3BECh. 7 - Prob. 7F.4AECh. 7 - Prob. 7F.4BECh. 7 - Prob. 7F.5AECh. 7 - Prob. 7F.5BECh. 7 - Prob. 7F.6AECh. 7 - Prob. 7F.6BECh. 7 - Prob. 7F.7AECh. 7 - Prob. 7F.7BECh. 7 - Prob. 7F.8AECh. 7 - Prob. 7F.8BECh. 7 - Prob. 7F.9AECh. 7 - Prob. 7F.9BECh. 7 - Prob. 7F.10AECh. 7 - Prob. 7F.10BECh. 7 - Prob. 7F.11AECh. 7 - Prob. 7F.11BECh. 7 - Prob. 7F.12AECh. 7 - Prob. 7F.12BECh. 7 - Prob. 7F.13AECh. 7 - Prob. 7F.13BECh. 7 - Prob. 7F.14AECh. 7 - Prob. 7F.14BECh. 7 - Prob. 7F.1PCh. 7 - Prob. 7F.4PCh. 7 - Prob. 7F.6PCh. 7 - Prob. 7F.7PCh. 7 - Prob. 7F.8PCh. 7 - Prob. 7F.9PCh. 7 - Prob. 7F.10PCh. 7 - Prob. 7F.11PCh. 7 - Prob. 7.3IACh. 7 - Prob. 7.4IACh. 7 - Prob. 7.5IACh. 7 - Prob. 7.6IA
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY