CHEMISTRY FOR TODAY+OWLV2  24 MO>IP<
CHEMISTRY FOR TODAY+OWLV2 24 MO>IP<
9th Edition
ISBN: 9780357107317
Author: Seager
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.65E

Calculate the boiling and freezing points of water solutions that are 1.15 M in the following solutes:

a. KBr , a strong electrolyte

b. ethylene glycol, a nonelectrolyte

c. ( NH 4 ) 2 CO 3 , strong electrolyte

d. Al 2 ( SO 4 ) 3 , a strong electrolyte

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The boiling and freezing points of 1.15M water solution of KBr, a strong electrolyte are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.65E

The boiling and freezing points of 1.15M water solution of KBr, a strong electrolyte are 101.2°C and 4.3°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since KBr is a strong electrolyte it will completely dissociate in the solution and the value of n for KBr is 2. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=2×0.52°C/M×1.15M=1.196°C

Now, the boiling point of water solution can be calculated by adding value of ΔTb as given below.

Boiling point=100°C+1.196°C=101.196°C101.2°C

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since KBr is a strong electrolyte it will completely dissociate in the solution and the value of n for KBr is 2. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=2×1.86°C/M×1.15M=4.278°C

Now, the freezing point of water solution can be calculated by subtracting value of ΔTf as given below.

Freezing point=0°C4.278°C=4.278°C4.3°C

Conclusion

The boiling and freezing points of 1.15M water solution of KBr, a strong electrolyte are 101.2°C and 4.3°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The boiling and freezing points of 1.15M water solution of ethylene glycol, a nonelectrolyte, are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.65E

The boiling and freezing points of 1.15M water solution of ethylene glycol, a nonelectrolyte are 100.6°C and 2.1°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since ethylene glycol is a nonelectrolyte it will not dissociate in the solution and the value of n for ethylene glycol is 1. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=1×0.52°C/M×1.15M=0.598°C

Now, the boiling point of water solution can be calculated by adding value of ΔTb as given below.

Boiling point=100°C+0.598°C=100.598°C100.6°C

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since ethylene glycol is a nonelectrolyte it will not dissociate in the solution and the value of n for ethylene glycol is 1. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=1×1.86°C/M×1.15M=2.139°C

Now, the freezing point of water solution can be calculated by subtracting value of ΔTf as given below.

Freezing point=0°C2.139°C=2.139°C2.1°C

Conclusion

The boiling and freezing points of 1.15M water solution of ethylene glycol, a nonelectrolyte are 100.6°C and 2.1°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The boiling and freezing points of 1.15M water solution of (NH4)2CO3, a strong electrolyte, are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.65E

The boiling and freezing points of 1.15M water solution of (NH4)2CO3, strong electrolyte are 101.8°C and 6.4°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since (NH4)2CO3 is a strong electrolyte it will dissociate in the solution completely and the value of n for (NH4)2CO3 is 3. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=3×0.52°C/M×1.15M=1.794°C

Now, the boiling point of water solution can be calculated by adding value of ΔTb as given below.

Boiling point=100°C+1.794°C=101.794°C101.8°C

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since (NH4)2CO3 is a strong electrolyte it will dissociate in the solution completely and the value of n for (NH4)2CO3 is 3. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=3×1.86°C/M×1.15M=6.417°C

Now, the freezing point of water solution can be calculated by subtracting value of ΔTf as given below.

Freezing point=0°C6.417°C=6.417°C6.4°C

Conclusion

The boiling and freezing points of 1.15M water solution of (NH4)2CO3, strong electrolyte are 101.8°C and 6.4°C respectively.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

The boiling and freezing points of 1.15M water solution of Al2(SO4)3, a strong electrolyte are to be calculated.

Concept introduction:

Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.65E

The boiling and freezing points of 1.15M water solution of Al2(SO4)3, a strong electrolyte are 103°C and 10.7°C respectively.

Explanation of Solution

The formula to calculate boiling point is given below as,

ΔTb=nKbM

Where,

n is the number of ions in the solution.

Kb is the boiling point constant which is defined for a particular solvent.

M is the molarity of solution.

Since Al2(SO4)3 is a strong electrolyte it will dissociate in the solution completely and the value of n for Al2(SO4)3 is 5. The value of Kb for water is 0.52°C/M.

Substitute the value of n, Kb and M in the above equation as follows.

ΔTb=nKbM=5×0.52°C/M×1.15M=2.99°C

Now, the boiling point of water solution can be calculated by adding value of ΔTb as given below.

Boiling point=100°C+2.99°C=102.99°C103°C

The formula to calculate freezing point is given below as,

ΔTf=nKfM

Where,

n is the number of ions in the solution.

Kf is the freezing point constant which is defined for a particular solvent.

M is the molarity of solution.

Since Al2(SO4)3 is a strong electrolyte it will dissociate in the solution completely and the value of n for Al2(SO4)3 is 5. The value of Kf for water is 1.86°C/M.

Substitute the value of n, Kf and M in the above equation as follows.

ΔTf=nKfM=5×1.86°C/M×1.15M=10.695°C

Now, the freezing point of water solution can be calculated by subtracting value of ΔTf as given below.

Freezing point=0°C10.695°C=10.695°C10.7°C

Conclusion

The boiling and freezing points of 1.15M water solution of Al2(SO4)3, a strong electrolyte are 103°C and 10.7°C respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

CHEMISTRY FOR TODAY+OWLV2 24 MO>IP<

Ch. 7 - Prob. 7.11ECh. 7 - Classify each of the following solutes into the...Ch. 7 - Prob. 7.13ECh. 7 - Prob. 7.14ECh. 7 - Prob. 7.15ECh. 7 - Prob. 7.16ECh. 7 - Prob. 7.17ECh. 7 - Prob. 7.18ECh. 7 - Prob. 7.19ECh. 7 - Prob. 7.20ECh. 7 - Prob. 7.21ECh. 7 - Prob. 7.22ECh. 7 - Calculate the molarity of the following solutions:...Ch. 7 - Prob. 7.24ECh. 7 - Prob. 7.25ECh. 7 - Calculate: a. How many grams of solid would be...Ch. 7 - Prob. 7.27ECh. 7 - Prob. 7.28ECh. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Prob. 7.31ECh. 7 - Calculate the concentration in (w/w) of the...Ch. 7 - Prob. 7.33ECh. 7 - Calculate the concentration in (v/v) of the...Ch. 7 - Calculate the concentration in (v/v) of the...Ch. 7 - Consider the blood volume of an adult to be 5.0L....Ch. 7 - Prob. 7.37ECh. 7 - Calculate the concentration in (w/v) of the...Ch. 7 - Calculate the concentration in (w/v) of the...Ch. 7 - Prob. 7.40ECh. 7 - Prob. 7.41ECh. 7 - Prob. 7.42ECh. 7 - Explain how you would prepare the following...Ch. 7 - Prob. 7.44ECh. 7 - Prob. 7.45ECh. 7 - Calculate the following: a. The number of grams of...Ch. 7 - Prob. 7.47ECh. 7 - Explain how you would prepare the following dilute...Ch. 7 - Prob. 7.49ECh. 7 - Prob. 7.50ECh. 7 - Prob. 7.51ECh. 7 - How many grams of solid Na2CO3 will react with...Ch. 7 - Prob. 7.53ECh. 7 - Prob. 7.54ECh. 7 - Prob. 7.55ECh. 7 - Prob. 7.56ECh. 7 - How many milliliters of 0.124MNaOH solution will...Ch. 7 - How many milliliters of 0.124MNaOH solution will...Ch. 7 - How many milliliters of 0.115MNaOH solution will...Ch. 7 - Stomach acid is essentially 0.10MHCl. An active...Ch. 7 - Prob. 7.61ECh. 7 - Prob. 7.62ECh. 7 - Prob. 7.63ECh. 7 - Calculate the boiling and freezing points of water...Ch. 7 - Calculate the boiling and freezing points of water...Ch. 7 - Prob. 7.66ECh. 7 - Prob. 7.67ECh. 7 - Prob. 7.68ECh. 7 - Calculate the osmolarity for the following...Ch. 7 - Prob. 7.70ECh. 7 - Calculate the osmotic pressure of a 0.125M...Ch. 7 - Prob. 7.72ECh. 7 - Prob. 7.73ECh. 7 - Calculate the osmotic pressure of a solution that...Ch. 7 - Prob. 7.75ECh. 7 - Prob. 7.77ECh. 7 - Prob. 7.78ECh. 7 - Prob. 7.79ECh. 7 - Suppose an osmotic membrane separates a 5.00 sugar...Ch. 7 - Prob. 7.81ECh. 7 - Prob. 7.82ECh. 7 - Suppose you have a bag made of a membrane like...Ch. 7 - Prob. 7.84ECh. 7 - Prob. 7.85ECh. 7 - Prob. 7.86ECh. 7 - Prob. 7.87ECh. 7 - Prob. 7.88ECh. 7 - Prob. 7.89ECh. 7 - When a patient has blood cleansed by hemodialysis,...Ch. 7 - Prob. 7.91ECh. 7 - Prob. 7.92ECh. 7 - Prob. 7.93ECh. 7 - Prob. 7.94ECh. 7 - Prob. 7.95ECh. 7 - Strips of fresh meat can be preserved by drying....Ch. 7 - If a salt is added to water, which of the...Ch. 7 - Prob. 7.98ECh. 7 - Prob. 7.99ECh. 7 - Prob. 7.100ECh. 7 - Which one of the following compounds is a...Ch. 7 - Prob. 7.102ECh. 7 - Prob. 7.103ECh. 7 - Prob. 7.104ECh. 7 - Prob. 7.105ECh. 7 - Prob. 7.106ECh. 7 - Prob. 7.107ECh. 7 - Prob. 7.108ECh. 7 - Prob. 7.109ECh. 7 - Prob. 7.110ECh. 7 - In a dilute solution of sodium chloride in water,...Ch. 7 - A salt solution has a molarity of 1.5M. How many...Ch. 7 - Prob. 7.113ECh. 7 - Prob. 7.114ECh. 7 - Prob. 7.115ECh. 7 - Prob. 7.116ECh. 7 - Prob. 7.117ECh. 7 - Prob. 7.118ECh. 7 - Prob. 7.119ECh. 7 - Prob. 7.120ECh. 7 - Prob. 7.121ECh. 7 - Prob. 7.122E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY