FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 5CP
Show that the Reynolds number for flow in a circular pipe of diameter D can be expressed as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A piping system consists of three pipes arranged in series, the lengths of the pipes are 1200 m, 750 m and 600 m and diameters are 750 mm, 600 mm, 450 mm respectively. Transform the system to an equivalent 450 mm diameter pipe
The ethanol solution is pumped into a vessel 25 m above the reference point through a 25 mm diameter steel pipe at a rate of 10 m3 / hr. The pipe length is 35m and there are 2 elbows. Calculate the power requirements of the pump. The properties of the solution are density 975 kg / m3 and viscosity 4x 10-4 Pa s.
a. Reynold number = Answer
b. Loss of Energy along the straight pipe = Answer J / kg.
c. Losing Energy at curves = Answer J / kg.
d. Total energy to overcome friction = Answer J / kg.
e. Energy to increase water according to height = Answer J / kg.
f. The theoretical energy requirement of the pump ethanol / second = Answer J / kg.
g. Actual pump power requirement = Answer watt.
Oil at 10°C is flowing through an horizontal commercial steel pipe of a length L = 250m. The volumetric flow rate of
the oil is 550L/min. A pressure difference of AP = 52kPa is available to overcome the frictional loss within the pipe.
Calculate pipe diameter. Density of the oil is 921kg/m³
Chapter 8 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 8 - How is the hydrodynamic entry length defined for...Ch. 8 - Why are liquids usually transported in circular...Ch. 8 - What is the physical significance of the Reynolds...Ch. 8 - Consider a person walking first in air and then in...Ch. 8 - Show that the Reynolds number for flow in a...Ch. 8 - Which fluid at room temperature requires a larger...Ch. 8 - What is the eneia1Iy accepted value of the...Ch. 8 - Consider the flow of air and wale in pipes of the...Ch. 8 - Consider laminar flow in a circular pipe. Is the...Ch. 8 - How does surface roughness affect the pressure...
Ch. 8 - What is hydraulic diameter? How is it defined?...Ch. 8 - Shown here is a cool picture of water being...Ch. 8 - What fluid property is responsible for the...Ch. 8 - In the fully developed region of flow in a...Ch. 8 - Someone claims that the volume flow rate in a...Ch. 8 - Someone claims that the average velocity in a...Ch. 8 - Someone claims that the shear stress at the center...Ch. 8 - Someone claims that in fully developed turbulent...Ch. 8 - How does the wall shear stress w , vary along the...Ch. 8 - How is the friction factor for flow in a pipe...Ch. 8 - Discuss whether fully developed pipe flow is one-,...Ch. 8 - Consider fully developed flow in a circular pipe...Ch. 8 - Consider fully developed laminar how in a...Ch. 8 - Explain why the friction factor is independent of...Ch. 8 - Consider laminar flow of air in a circular pipe...Ch. 8 - Consider fully developed laminar flow in a...Ch. 8 - How is head loss related to pressure loss? For a...Ch. 8 - What is turbulent viscosity? What caused it?Ch. 8 - What is the physical mechanism that causes the...Ch. 8 - The head toss for a certain circular pipe is given...Ch. 8 - The velocity profile for the fully developed...Ch. 8 - Water at 15°C (p = 999.1 kg/m3 and = 1.138 × 10-3...Ch. 8 - Water at 70F passes through...Ch. 8 - Heated air at 1 atm and 100F is to be transported...Ch. 8 - In fully developed laminar flow in a circular...Ch. 8 - The velocity profile in fully developed laminar...Ch. 8 - Repeat Prob. 8-36 for a pipe of inner radius 7 cm.Ch. 8 - Water at 10C (p = 999.7 kg/m3 and = 1.307 ×...Ch. 8 - Consider laminar flow of a fluid through a square...Ch. 8 - Repeat Prob. 8-39 for tribulent flow in smooth...Ch. 8 - Air enters a 10-m-long section of a rectangular...Ch. 8 - Consider an air solar collector that is 1 m wide...Ch. 8 - Oil with p = 876 kg/m3 and = 0.24 kg/m.s is...Ch. 8 - Glycenii at 40 C with p = l22 kg/m3 and = 0.27...Ch. 8 - Air at 1 atm and 60 F is flowing through a 1 ft ×...Ch. 8 - Oil with a density of 850 kg/m3 and kinematic...Ch. 8 - In an air heating system, heated air at 40 C and...Ch. 8 - Glycerin at 40 C with p = 1252 kg/m3 and = 0.27...Ch. 8 - Liquid ammonia at 20 C is flowing through a...Ch. 8 - Consider the fully developed flow of glycerin at...Ch. 8 - The velocity profile for a steady laminar flow in...Ch. 8 - The generalized Bernoulli equation for unsteady...Ch. 8 - What is minor loss in pipe flow? How is the minor...Ch. 8 - Define equivalent length for minor loss in pipe...Ch. 8 - The effect of rounding of a pipe inlet on the loss...Ch. 8 - The effect of rounding of a pipe exit on the loss...Ch. 8 - Which has a greater minor loss coefficient during...Ch. 8 - A piping system involves sharp turns, and thus...Ch. 8 - During a retrofitting project of a fluid flow...Ch. 8 - A horizontal pipe has an abrupt expansion from...Ch. 8 - Consider flow from a water reservoir through a...Ch. 8 - Repeat Prob. 8-62 for a slightly rounded entrance...Ch. 8 - Water is to be withdrawn from an 8-m-high water...Ch. 8 - A piping system equipped with a pump is operating...Ch. 8 - Water is pumped from a large lower reservoir to a...Ch. 8 - For a piping system, define the system curve, the...Ch. 8 - Prob. 68CPCh. 8 - Consider two identical 2-m-high open tanks tilled...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of different...Ch. 8 - A piping system involves two pipes of identical...Ch. 8 - Water at 15 C is drained from a large reservoir...Ch. 8 - Prob. 74PCh. 8 - The water needs of a small farm are to be met by...Ch. 8 - Prob. 76EPCh. 8 - A 2.4-m-diameter tank is initially filled with...Ch. 8 - A 3-m-diameter tank is initially filled with water...Ch. 8 - Reconsider Prob. 8-78. In order to drain the tank...Ch. 8 - Gasoline (p = 680 kg/m3 and v = 4.29 × 10-7 m2/s)...Ch. 8 - Prob. 81EPCh. 8 - Oil at 20 C is flowing through a vertical glass...Ch. 8 - Prob. 83PCh. 8 - A 4-in-high cylindrical tank having a...Ch. 8 - A fanner is to pump water at 70 F from a river to...Ch. 8 - A water tank tilled with solar-heated vater at 4OC...Ch. 8 - Two water reservoirs A and B are connected to each...Ch. 8 - Prob. 89PCh. 8 - A certain pail of cast iron piping of a water...Ch. 8 - Repeat Prob. 8-91 assuming pipe A has a...Ch. 8 - Prob. 93PCh. 8 - Repeat Prob. 8-93 for cast lion pipes of the same...Ch. 8 - Water is transported by gravity through a...Ch. 8 - Water to a residential area is transported at a...Ch. 8 - In large buildings, hot water in a water tank is...Ch. 8 - Prob. 99PCh. 8 - Two pipes of identical length and material are...Ch. 8 - What are the primary considerations when selecting...Ch. 8 - What is the difference between laser Doppler...Ch. 8 - Prob. 103CPCh. 8 - Prob. 104CPCh. 8 - Explain how flow rate is measured with...Ch. 8 - Prob. 106CPCh. 8 - Prob. 107CPCh. 8 - Prob. 108CPCh. 8 - A 15-L kerosene tank (p = 820 kg/m3) is filled...Ch. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114EPCh. 8 - Prob. 115EPCh. 8 - Prob. 116PCh. 8 - A Venturi meter equipped with a differential...Ch. 8 - Prob. 119PCh. 8 - Prob. 120PCh. 8 - Prob. 121PCh. 8 - Prob. 122EPCh. 8 - Prob. 123PCh. 8 - The flow rate of water at 20°C (p = 998 kg/m3 and ...Ch. 8 - Prob. 125PCh. 8 - Prob. 126PCh. 8 - Prob. 127PCh. 8 - The conical container with a thin horizontal tube...Ch. 8 - Prob. 129PCh. 8 - The compressed air requirements of a manufacturing...Ch. 8 - A house built on a riverside is to be cooled iii...Ch. 8 - The velocity profile in fully developed lamina,...Ch. 8 - Prob. 133PCh. 8 - Two pipes of identical diameter and material are...Ch. 8 - Prob. 135PCh. 8 - Shell-and-tube heat exchangers with hundred of...Ch. 8 - Water at 15 C is to be dischaged froiti a...Ch. 8 - Consider flow front a reservoir through a...Ch. 8 - A pipelme ihat Eransports oil ai 4OC at a iate of...Ch. 8 - Repeat Prob. 8-140 for hot-water flow of a...Ch. 8 - Prob. 142PCh. 8 - Prob. 145EPCh. 8 - Prob. 146EPCh. 8 - In a hydroelectric power plant. water at 20°C is...Ch. 8 - Prob. 148PCh. 8 - Prob. 152PCh. 8 - The water at 20 C in a l0-m-diameter, 2-m-high...Ch. 8 - Prob. 155PCh. 8 - Find the total volume flow rate leaving a tank...Ch. 8 - Prob. 158PCh. 8 - Water is siphoned from a reservoir open to the...Ch. 8 - It is a well-known fact that Roman aqueduct...Ch. 8 - In a piping system, what is used to control the...Ch. 8 - Prob. 163PCh. 8 - Prob. 164PCh. 8 - Prob. 165PCh. 8 - Consider laminar flow of water in a...Ch. 8 - Water at 10 C flows in a 1.2-cm-diameter pipe at a...Ch. 8 - Engine oil at 20 C flows in a 15-cm-diamcter pipe...Ch. 8 - Prob. 169PCh. 8 - Watet flows in a I 5-cm-diameter pipe a, a...Ch. 8 - The pressure drop for a given flow is determined...Ch. 8 - Prob. 172PCh. 8 - Air at 1 atm and 25 C flows in a 4-cm-diameter...Ch. 8 - Hot combustion 8ases approximated as air at I atm...Ch. 8 - Air at 1 aim and 40 C flows in a 8-cm-diameter...Ch. 8 - The valve in a piping system cause a 3.1 in head...Ch. 8 - A water flow system involves a 180 return bend...Ch. 8 - Air flows in an 8-cm-diameter, 33-m-long pipe at a...Ch. 8 - Consider a pipe that branches out into two...Ch. 8 - Prob. 182PCh. 8 - Prob. 183PCh. 8 - Prob. 184PCh. 8 - Prob. 185PCh. 8 - Prob. 186PCh. 8 - Design an experiment to measure the viscosity of...Ch. 8 - During a camping trip you notice that water is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The present pumping rate of crude oil through the Alaska Pipeline with an ID of 39 in is 550,000 barrels per day (1 barrel is 42 U. S. gallons). For crude oil at 60ºC, take ρ = 860 kg/m3 and μ ≈ 0.004 kg/m·s. What would be the maximum rate if the flow were constrained to be laminar? Take π = 22/7. Answer is asking for maximum flow rate for barrels per dayarrow_forwardA petroleum product of viscosity 0.5 m Ns/m2 and density 700 kg/m3 is pumped througha pipe of 0.15 m diameter to storage tanks situated 100 m away. The pressure drop alongthe pipe is 70 kN/m2. The pipeline has to be repaired and it is necessary to pump the liquid by an alternative route consisting of 70 m of 200 mm pipe followed by 50 m of 100 mm pipe. If the existing pump is capable of developing a pressure of 300 kN/m2, will it be suitable for use during the period required for the repairs? Calculate the pressure drop for the alternative pipe system. Take the roughnessof the pipe surface as 0.05 marrow_forwardThe above pipe is exchanged for a parallel pipe with a cross sectional area of 0.3m2 and is 20 m long, with a surface roughness coefficient of 0.005. The dynamicviscosity of the water is 1.002 x 10-3 Ns/m. Find the Reynold’s number of the flowand use Haarland’s formula to find the friction coefficient and Darcy’s formula todetermine the frictional pressure loss. Then determine the pressure at the outlet ofthe pipe.arrow_forward
- The loss coefficients for the pipe shown is: up to A it is 0.8, from A to B it is 1.2, from B to C it is 0.8, from C to D it is 2.2. Estimate the flow rate and the pressures at A, B, C, and D. The elevations are shown. al 10m al. 3m O P₁ B U Solution: 1. The energy equation can be simplified to 02₁-22= 1 el. 12 m P2 D 3 cm dia. 4. Pressure at A, PA= m; 5. Pressure at B, PB= m; 10 28 2g o The total energy loss occurred through this system is calculated as: h= o Relationship between Upipe and Vexit 2. Thus, velocity in the pipe is Upipe 3. Calculate the flow rate Q= -m; = is:-Vexit= m³/s; m/s; Upipe i kPa; (energy equation from surface to A) kPa; (energy equation from surface to B) Upipe 2garrow_forwardOil ( μ = 0.478 Pa.s and ν = 5.3 *10-4 m2/s ) flows downward in a pipe which is ( 3 cm ) in diameter and has a slope of ( 30o ) with the horizontal. The pressure gradient along the pipe is ( dp/dx = - 918.5 N/m3 ). Determine; a. The volume flow rate. b. The wall shear stress. c. The maximum and average velocities. d. The Reynolds number.arrow_forwardConsider the pipe system shown in the figure. Oil (μ = 0.3 Pa-s) flows at a rate of 20 L/s through 100-mm diameter cast-iron pipe (ε = 0.26 mm). The fluid enters the pipe through an entrance (r/d = 0.1) and exits after passing through a wide-open angle valve. What is the total minor loss in the pipe? a.2.61 m b.0.72 m c.1.69 m d. 1.17 m OIL SG = 0.90 Z Angle valve 2.6 m- Consider flow of water (μ = 0.001 Pa-s) in the 6-cm diameter cast-iron (ε = 0.26 mm) pipe shown in the figure. What is the discharge in the pipe? a.70.2 lps d = 6 cm b.10.9 lps c.40.5 lps F d.100.2 lps -10 m P2 = 250,000 Pa P₁ = 350,000 Pa Consider the EGL and HGL of the 200-m pipeline shown. There is a turbine at CD and the fluid is water. Neglect minor losses. What is the velocity in pipe BC? 258.482 m EGL a.29.72 m/s b.5.84 m/s 252.646 m 235.138 m c.10.70 m/s d.45.03 m/s 160.085 m 120.085 m A HGL L = 100 m 229.302 m 190.106 m B 115.053 m 75.053 m) f = 0.01 CD 40° f = 0.01 45.032 m 0m Earrow_forward
- Show that the Reynolds number for flow in a circular pipe of diameter D can be expressed as Re = 4m./(?D?).arrow_forwardWater (kinematic viscosity, ν, = 1.14 *10-6 m2/s) flows through a piping system with a flow rate of 0.75 m3/s. The pipe is 2600 m long and 600 mm inside diameter. The pipe has four gate valves,two angle valves, one swing check valve, three standard tees through flow, and three 90o standardelbows. Calculate the following:a- The total length of the piping system.b- The Darcy friction factor if the pipe is fully smooth.arrow_forward(a) Prove that the loss of pressure head for the viscous flow through a circular pipe is given by h. (b) Determine (i) the pressure gradient, (i) the shear stress at the two horizontal parallel plates, and (iii) the discharge per meter width for the laminar flow of oil with a maximum velocity of 1.5 m/s between two horizontal parallel fixed plates which are 80 mm apart. Take viscosity of oil as 1.962 Ns/m2.arrow_forward
- PROBLEM: A Venturimeter (Cd = 0.68) and Pipe orifice (Cd = 0.64) are attached one at a time to a 200mm diameter pipe. The throat and the orifice diameters are taken to be 0.25D. If the manometer readings at the pipe and the throat/orifice are taken to be 2.7m and 0.32m respectively: Determine the flow for venturimeter Determine the flow for the Pipe orifice .Determine the height of water if a pitot tube was inserted insteadarrow_forwardWater enters a piping system with a diameter of 0.1016 m from a reservoir with a volumetric flow rate of 0.1893 m³/min. Determine whether the flow is laminar or turbulent if, during the winter, the dynamic viscosities of μ = 1.308x 10-3 Pa 's and 0.687x10-3 Pa s during the summer. What is the length of pipe necessary to reach a fully developed flow?arrow_forwardWater is pumped from a pond to a tank by using a pump at a rate of 55 dm/s through a 50.4-mm-diameter steel pipe. The total length of the pipe is 95 m, and the viscosity of water is 1 mm2/s. Calculate the power required in the pump to maintain the discharge. Refer to Figure Q1 to include all losses in your calculation. (2) 20 m Gate Valve Pump (Fully Opened) 2 m Globe Valve (75% Opened) Figure Q1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License