
Concept explainers
The flow just upstream of a normal shock wave is given by

The downstream pressure.
The downstream temperature.
The downstream density.
The Mach number of downstream shock.
The pressure
The temperature
The entropy change.
Answer to Problem 8.7P
The downstream pressure is
The downstream temperature is
The downstream density is
The Mach number of downstream shock is
The pressure
The temperature
The entropy change is
Explanation of Solution
Given:
The upstream Mach number is
The upstream static pressure is
The upstream temperature is
Formula used:
The expression for the downstream pressure is given as,
Here,
The expression for the downstream temperature is given as,
The expression for the downstream Mach number is given as,
The expression for the downstream density is given as,
The expression for the pressure
The expression for the temperature
The expression for the entropy change is given as,
Here,
The expression for the pressure
Calculation:
The downstream pressure can be calculated as,
The downstream density can be calculated as,
Here, at pressure
The temperature of the downstream can be calculated as,
The Mach number at the downstream can be calculated as,
The pressure
The pressure
The temperature
The change in entropy can be calculated as,
Conclusion:
Therefore, the downstream pressure is
Therefore, the downstream temperature is
Therefore, the downstream density is
Therefore, the Mach number of downstream shock is
Therefore, the pressure
Therefore, the temperature
Therefore, the entropy change is
Want to see more full solutions like this?
Chapter 8 Solutions
Fundamentals of Aerodynamics
- 32 mm 32 mm с b 32 mm 32 mm a PROBLEM 6.40 The extruded beam shown has a uniform wall thickness of 3 mm. Knowing that the vertical shear in the beam is 9 kN, determine the shearing stress at each of the five points indicated.arrow_forwardPROBLEM 6.39 6.39 The vertical shear is 5.3 kN in a beam having the cross section shown. Determine (a) the distance d for which Ta Tb, (b) the corresponding shearing stress at points a and b. = 12 mm |d→←125. mm 200 mm 12 mm b d. 100 mmarrow_forward100 kN 100 kN In A In 500 m 250 m 500 m B ΤΟΠΟΙΟΣ 180 mm 20 mm b 38 mm a -200 mm $381 mm 20 mm PROBLEM 6.23 For the beam and loading shown in Problem 6.22, determine the largest shearing stress in section n-n. PROBLEM 6.22 For the beam and loading shown, consider section n-n and determine the shearing stress at (a) point a, (b) the shearing stress at point b. 20 mm→ karrow_forward
- 100 kN In A n 100 kN 0.5 m 0.5 m 0.25 m 20 mm 180 mm b B a 000 20 mm- 38 mm 38 mm PROBLEM 6.21 For the beam and loading shown, consider section n-n and determine the shearing stress at (a) point a, (b) the shearing stress at point b. 20 mm -200 mmarrow_forward450 mm In 600 mm. a 72 mm 72 mm 125 kN 72 mm 192 mm t = 6 mm PROBLEM 6.10 For the beam and loading shown, consider section n-n and determine (a) the largest shearing stress in that section, (b) the shearing stress at point a.arrow_forwardPROBLEM 6.38 = 6.38 The vertical shear is 5.3 kN in a beam having the cross section shown. Knowing that d 100 mm, determine the shearing stress (a) at point a, (b) at point b. 12 mm d→ 125 mm 200 mm 12 mm b 100 mmarrow_forward
- 1. (6%) Please sketch the distribution of shear stresses in a rectangular beam and determine where the maximum shear stress occurs. !! C りarrow_forward1. (15%) (a) Consider a narrow rectangular beam subjected to a shear force V. Determine where the maximum shearing stress will be occurred. (b) Give an example for which plane stress condition can be used (c) Fixed supports only prevent rotation. (True/False) (d) Roller supports only prevent translation in vertical direction. (True/False) (e) Ely"=-q (True/False)arrow_forwardA horizontal pipe network has a connection of three pipes of different diameters, where the flow in section 3 exits to the atmosphere. The following requirements are required: a) Outlet flow rate at point 3. b) Pressure at point 2. c) x and y components of the force the flow exerts on the connection. Continuity, momentum, and energy equationarrow_forward
- The expression "flush" comes from the fact that the first toilet tanks were quite high, and you literally had to flush the toilet to move the stopper and flush the water. If the water level inside the tank is 1.8 m high and the pipe diameter is 5 cm, determine the following: a) The velocity of the water entering the toilet. b) The force at the junction of the pipe and the toilet, which is required to prevent the pipe from coming out and spilling water onto the floor. (Continuity, momentum, and energy equation)arrow_forwardPlease help me with this question, show step by step this is an application of a dynamic engineering problem this problem is quite longarrow_forwardPlease help me with this question, show step by step this is an application of a dynamic engineering problem.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning



