An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8.2, Problem 23P

The Ising model can be used to simulate other systems besides ferromagnets; examples include antiferromagnets, binary alloys, and even fluids. The Ising model of a fluid is called a lattice gas. We imagine that space is divided into a lattice of sites, each of which can be either occupied by a gas molecule or unoccupied. The system has no kinetic energy, and the only potential energy comes from interactions of molecules on adjacent sites. Specifically, there is a contribution of u 0 to the energy for each pair of neighboring sites that arc both occupied.

(a) Write down a formula for the grand partition function for this system, as a function of u 0 , T, and μ .

(b) Rearrange your formula to show that it is identical, up to a multiplicative factor that does not depend on the state of the system, to the ordinary partition function for an Ising ferromagnet in the presence of an external magnetic field B, provided that you make the replacements u 0 4 ε and μ 2 μ B B 8 ε . (Note that μ is the chemical potential of the gas while μ B is the magnetic moment of a dipole in the magnet.)

(c) Discuss the implications. Which states of the magnet correspond to low-density states of the lattice gas? Which states of the magnet correspond to high-density states in which the gas has condensed into a liquid? What shape does this model predict for the liquid-gas phase boundary in the P T plane?

Blurred answer
Students have asked these similar questions
Consider a free Fermi gas in two dimensions, confined to a squarearea A = L2. Find the Fermi energy (in terms of N and A), and show that the average energy of the particles is €F /2.
Let's consider the three atoms composing the molecule now have different masses and coordinate, while the axis of rotation is still z axis that is perpendicular to the xy plane. The first atom has a mass of 142.54 kg, with x coordinate at 3 m and y coordinate at 6 m. The second atom has a mass of 82.55 kg, with x coordinate at 1 m and y coordinate at 6 m. The third atom has a mass of 8 kg, with x coordinate at 5 m and y coordinate at 9 m. What is the moment of inertia in unit of kg m2 with respect to the x axis?
Let f (e) be the Fermi Dirac distribution function and U be the chemical potential. Obtain the expression for derivative of f (e) with respect to e at e=u
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ising model | A Bird's Eye View | Solid State Physics; Author: Pretty Much Physics;https://www.youtube.com/watch?v=1CCZkHPrhzk;License: Standard YouTube License, CC-BY