Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 9, Problem 177RQ

a)

To determine

The thermal efficiency and the required mass flow rate of helium when the isentropic efficiency is 100%.

a)

Expert Solution
Check Mark

Explanation of Solution

Given:

Pressure ratio (rp) is 8.

Net power output (W˙net) is 60MW.

Effectiveness (ε) is 0.75.

Compressor inlet temperature (T1) is 300K.

Turbine inlet temperature (T3) is 1800K.

Calculation:

Draw the Ts diagram of the cycle as in Figure (1).

Fundamentals of Thermal-Fluid Sciences, Chapter 9, Problem 177RQ

Refer Table A-2, “Ideal-gas specific heats of various common gases”, obtain the properties of the helium.

  cp=5.1926kJ/kgKk=1.667

Calculate the temperature at state 2s(T2s).

  T2s=T1(P1P2)k1k=T1(rP)k1k=(300K)(8)1.66711.667=689.4K

Calculate the temperature at state 4s(T4s).

  T4s=T3(P4P32)k1k=T3(1rP)k1k=(1800K)(18)1.66711.667=783.3K

Calculate the temperature at state 5(T5).

  T5=T2+ε(T4T2)=689.4K+(0.75)(783.3K689.4K)=759.8K

Calculate the mass flow rate of the helium (m˙).

  m˙=W˙netwnet=W˙netcp[(T3T4)(T2T1)]=60,000kJ/s(5.1926kJ/kgK)[(1800K783.3K)(689.4K300K)]=18.42kg/s

Thus, the mass flow rate of the helium is 18.42kg/s.

Calculate the thermal efficiency of the cycle (ηth).

  ηth=wnetqin=cp[(T3T4)(T2T1)]cp[(T3T5)]

  =(1800K783.3K)(689.4K300K)1800K759.8K=0.603=60.3%

Thus, the thermal efficiency of the cycle is 60.3%.

b)

To determine

The thermal efficiency and the required mass flow rate of helium when the isentropic efficiency is 80%.

b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Calculate the temperature at state 2s(T2s).

  T2s=T1(P1P2)k1k=T1(rP)k1k=(300K)(8)1.66711.667=689.4K

Calculate the temperature at state 2(T2).

  T2=T1+(T2sT1)ηC=300K+(689.4K300K)0.80=786.8K

Calculate the temperature at state 4s(T4s).

  T4s=T3(P4P32)k1k=T3(1rP)k1k=(1800K)(18)1.66711.667=783.3K

Calculate the temperature at state 4(T4).

  T4=T3ηT(T4sT3)=1800K(0.80)(1800K783.3K)=986.6K

Calculate the temperature at state 5(T5).

  T5=T2+ε(T4T2)=786.8K+(0.75)(986.6K786.8K)=936.7K

Calculate the mass flow rate of the helium (m˙).

  m˙=W˙netwnet=W˙netcp[(T3T4)(T2T1)]=60,000kJ/s(5.1926kJ/kgK)[(1800K986.6K)(786.8K300K)]=35.4kg/s

Thus, the mass flow rate of the helium is 35.4kg/s.

Calculate the thermal efficiency of the cycle (ηth).

  ηth=wnetqin=cp[(T3T4)(T2T1)]cp[(T3T5)]

  =(1800K986.6K)(786.8K300K)1800K936.7K=0.378=37.8%

Thus, the thermal efficiency of the cycle is 37.8%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 9 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20PCh. 9 - Prob. 21PCh. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - Prob. 53PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Prob. 64PCh. 9 - Prob. 65PCh. 9 - Prob. 66PCh. 9 - Prob. 67PCh. 9 - A simple Brayton cycle using air as the working...Ch. 9 - Prob. 70PCh. 9 - Consider a simple Brayton cycle using air as the...Ch. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - A gas-turbine power plant operates on a simple...Ch. 9 - Prob. 77PCh. 9 - Prob. 78PCh. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 83PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 86PCh. 9 - Prob. 87PCh. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - Prob. 92PCh. 9 - Prob. 93PCh. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Prob. 98PCh. 9 - Prob. 99PCh. 9 - Prob. 100PCh. 9 - Prob. 101PCh. 9 - Prob. 102PCh. 9 - Prob. 103PCh. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107PCh. 9 - Refrigerant-134a is used as the working fluid in a...Ch. 9 - Prob. 109PCh. 9 - A simple ideal Rankine cycle with water as the...Ch. 9 - Prob. 111PCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Prob. 114PCh. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - Prob. 121PCh. 9 - Prob. 122PCh. 9 - Prob. 123PCh. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 127PCh. 9 - Prob. 128PCh. 9 - Prob. 129PCh. 9 - Prob. 130PCh. 9 - Prob. 131PCh. 9 - Prob. 132PCh. 9 - Why is the reversed Carnot cycle executed within...Ch. 9 - Prob. 134PCh. 9 - Prob. 135PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 137PCh. 9 - Prob. 138PCh. 9 - Prob. 139PCh. 9 - Prob. 140PCh. 9 - Prob. 141PCh. 9 - Prob. 142PCh. 9 - Prob. 143PCh. 9 - Prob. 144PCh. 9 - Prob. 145PCh. 9 - Prob. 146PCh. 9 - Prob. 148PCh. 9 - Prob. 149PCh. 9 - A commercial refrigerator with refrigerant-134a as...Ch. 9 - Prob. 151PCh. 9 - Prob. 153PCh. 9 - Prob. 154PCh. 9 - Prob. 155PCh. 9 - Prob. 156PCh. 9 - Prob. 157PCh. 9 - Prob. 158PCh. 9 - Prob. 159PCh. 9 - Refrigerant-134a enters the condenser of a...Ch. 9 - Prob. 161PCh. 9 - Prob. 162PCh. 9 - Prob. 164RQCh. 9 - Prob. 165RQCh. 9 - Prob. 166RQCh. 9 - Prob. 167RQCh. 9 - Prob. 168RQCh. 9 - A Brayton cycle with a pressure ratio of 12...Ch. 9 - Prob. 170RQCh. 9 - Prob. 171RQCh. 9 - Prob. 172RQCh. 9 - Prob. 173RQCh. 9 - Prob. 175RQCh. 9 - Prob. 176RQCh. 9 - Prob. 177RQCh. 9 - Prob. 178RQCh. 9 - Prob. 179RQCh. 9 - Prob. 180RQCh. 9 - Prob. 181RQCh. 9 - Prob. 182RQCh. 9 - Prob. 183RQCh. 9 - Prob. 184RQCh. 9 - Prob. 185RQCh. 9 - Prob. 186RQCh. 9 - A large refrigeration plant is to be maintained at...Ch. 9 - An air conditioner with refrigerant-134a as the...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY