FUND.OF PHYSICS-W/3 ACCESS
FUND.OF PHYSICS-W/3 ACCESS
10th Edition
ISBN: 9781119298199
Author: Halliday
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 9, Problem 1Q

Figure 9-23 shows an overhead view of three particles on which external forces act. The magnitudes and directions of the forces on two of the particles are indicated. What are the magnitude and direction of the force acting on the third particle if the center of mass of the three-particle system is (a) stationary, (b) moving at a constant velocity rightward, and (c) accelerating rightward?

Chapter 9, Problem 1Q, Figure 9-23 shows an overhead view of three particles on which external forces act. The magnitudes

Figure 9-23 Question 1.

Expert Solution & Answer
Check Mark
To determine

To find:

a) the force acting on third particle when center of mass is stationary.

b) the force acting on third particle when center of mass is moving rightward with constant velocity.

c) the force acting on third particle when center of mass is accelerating rightward.

Answer to Problem 1Q

Solution:

a) Force acting on third particle when center of mass is stationary, F3=2 N in the right direction.

b) Force acting on third particle when center of mass is moving rightward with constant velocity, F=2 N in the right direction.

c) Force acting on third particle when center of mass is accelerating rightward, F3>2 N in the right direction

Explanation of Solution

1) Concept:

We have to calculate the net force acting on the system.As the system contains three particles and the center of mass is to remain stationary, the net force acting on the system should be zero. Using this we can find the force acting on the third particle.

2) Formula:

FNet=F

3) Given:

i) F1=5 N acting on particle 1 in the left direction

ii) F2=3 N acting on particle 2 in the right direction

4) Calculation:

a) For the center of mass to be stationary, the net force acting on the system should be equal to zero.

FNet=F=0

FNet=-5+3+F3=0

F3=2 N

So, F3=2 N and the positive sign indicates that it should be in the right direction.

b) For the center of mass to move on the right with constant velocity, net force acting on the system should be zero.

FNet=F=0

FNet=-5+3+F3=0

F3=2 N

So, F3=2 N and positive sign indicates that it should be in right direction.

c) For the center of mass to move in the right hand direction with some acceleration

FNet=F>0

FNet=-5+3+F3>0

F3>2 N  in right direction.

So, for center of mass to accelerate rightward, we should have F3>2N in the right direction

Conclusion:

Considering the direction and magnitude of the acceleration of the center of mass, we can find the direction and magnitude of the net force acting on the third particle.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 2.00 kg particle has the xy coordinates (1.20 m, 0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, 0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates (0.500 m,0.700 m)?
An object with mass m1 = 3.00 kg is moving along the positive x axis with a speed v1i = 2 m/s straight towards two objects with masses m2 = 2.00 kg and m3 = 4.00 kg, which are initially at rest. When they collide, object 1 comes to rest and object 2 moves away with a speed of v2f = 1.5 m/s at an angle of 50 degrees above the x axis. What is the direction of the velocity of the center of mass of the system comprised of all three objects after the collision?  A) Along the x axis B) A an angle of 50 degrees above the x axis C) At an angle of 50 degrees below the x axis D) At an angle > 0 degrees and <50 degrees above the x axis E) At an angle>0 degrees and <50 degrees below the x axis   The correct answer is A but I am confused why it is A, if you could explain the justification as to why the answer is option A.
PART 1: A 5.00 kg particle has the xy coordinates (1.20 m, 2.00 m), and a 6.00 kg particle has the xy coordi-nates (0.300 m, 0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you placea 4.00 kg particle such that the center of mass of the three-particle system has the coordinates (0.500 m, 0.900 m)? PART 2: A rope is used to pull a 3.5 kg block at constant speed 6 m along a horizontal oor. The force onthe block from the rope is 7 N and directed  = 20 above the horizontal. What are (a) the work done by therope's force, (b) the increase in thermal energy of the block- oor system. PART 3: Draw a labelled gure to explain the idea of turning point in terms of energy.

Chapter 9 Solutions

FUND.OF PHYSICS-W/3 ACCESS

Ch. 9 - Block 1 with mass m1 slides along an x axis across...Ch. 9 - Figure 9-34 shows four graphs of position versus...Ch. 9 - A 2.00 kg particle has the xy coordinates 1.20 m,...Ch. 9 - Figure 9-35 shows a three-particle system, with...Ch. 9 - Figure 9-36 shows a slab with dimensions d1 = 11.0...Ch. 9 - In Fig. 9-37, three uniform thin rods, each of...Ch. 9 - GO What are a the x coordinate and b the y...Ch. 9 - Figure 9-39 shows a cubical box that has been...Ch. 9 - ILW In the ammonia NH3 molecule of Fig. 9-40,...Ch. 9 - GO A uniform soda can of mass 0.140 kg is 12.0 cm...Ch. 9 - ILW A stone is dropped at t = 0. A second stone,...Ch. 9 - GO A 1000 kg automobile is at rest at a traffic...Ch. 9 - A big olive m = 0.50 kg lies at the origin of an...Ch. 9 - Prob. 12PCh. 9 - SSM A shell is shot with an initial velocity v0 of...Ch. 9 - In Figure 9-43, two particles are launched from...Ch. 9 - Figure 9-44 shows an arrangement with an air...Ch. 9 - GO Ricardo, of mass 80 kg, and Carmelita, who is...Ch. 9 - GO In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg...Ch. 9 - A 0.70 kg ball moving horizontally at 5.0 m/s...Ch. 9 - ILW A 2100 kg truck traveling north at 41 km/h...Ch. 9 - GO At time t = 0, a ball is struck at ground level...Ch. 9 - A 0.30 kg softball has a velocity of 15 m/s at an...Ch. 9 - Figure 9-47 gives an overhead view of the path...Ch. 9 - Until his seventies, Henri LaMothe Fig. 9-48...Ch. 9 - In February 1955, a paratrooper fell 370 m from an...Ch. 9 - A 1.2 kg ball drops vertically onto a floor,...Ch. 9 - In a common but dangerous prank, a chair is pulled...Ch. 9 - SSM A force in the negative direction of an x axis...Ch. 9 - In tae-kwon-do, a hand is slammed down onto a...Ch. 9 - Suppose a gangster sprays Supermans chest with 3 g...Ch. 9 - Two average forces. A steady stream of 0.250 kg...Ch. 9 - Jumping up before the elevator hits. After the...Ch. 9 - A 5.0 kg toy car can move along an x axis; Fig....Ch. 9 - GO Figure 9-51 shows a 0.300 kg baseball just...Ch. 9 - Basilisk lizards can run across the top of a water...Ch. 9 - GO Figure 9-53 shows an approximate plot of force...Ch. 9 - A 0.25 kg puck is initially stationary on an ice...Ch. 9 - SSM A soccer player kicks a soccer ball of mass...Ch. 9 - In the overhead view of Fig. 9-54, a 300 g ball...Ch. 9 - SSM A 91 kg man lying on a surface of negligible...Ch. 9 - A space vehicle is traveling at 4300 km/h relative...Ch. 9 - Figure 9-55 shows a two-ended rocket that is...Ch. 9 - An object, with mass m and speed v relative to an...Ch. 9 - In the Olympiad of 708 B.C., some athletes...Ch. 9 - Prob. 44PCh. 9 - SSM WWW A 20.0 kg body is moving through space in...Ch. 9 - A 4.0 kg mess kit sliding on a frictionless...Ch. 9 - A vessel at rest at the origin of an xy coordinate...Ch. 9 - GO Particle A and particle B are held together...Ch. 9 - A bullet of mass 10 g strikes a ballistic pendulum...Ch. 9 - A 5.20 g bullet moving at 672 m/s strikes a 700 g...Ch. 9 - GO In Fig. 9-58, a 3.50 g bullet is fired...Ch. 9 - GO In Fig. 9-59, a 10 g bullet moving directly...Ch. 9 - Prob. 53PCh. 9 - A completely inelastic collision occurs between...Ch. 9 - ILW A 5.0 kg block with a speed of 3.0 m/s...Ch. 9 - In the before part of Fig. 9-60, car A mass 1100...Ch. 9 - Prob. 57PCh. 9 - In Fig. 9-62, block 2 mass 1.0 kg is at rest on a...Ch. 9 - ILW In Fig. 9-63, block 1 mass 2.0 kg is moving...Ch. 9 - Module 9-7 Elastic Collisions in One Dimension In...Ch. 9 - SSM A cart with mass 340 g moving on a...Ch. 9 - Two titanium spheres approach each other head-on...Ch. 9 - Block 1 of mass m1 slides along a frictionless...Ch. 9 - GO A steel ball of mass 0.500 kg is fastened to a...Ch. 9 - SSM A body of mass 2.0 kg makes an elastic...Ch. 9 - Block 1, with mass m1 and speed 4.0 m/s, slides...Ch. 9 - In Fig. 9-66, particle 1 of mass m1 = 0.30 kg...Ch. 9 - GO In Fig. 9-67, block 1 of mass m1 slides from...Ch. 9 - GO A small ball of mass m is aligned above a...Ch. 9 - GO In Fig. 9-69, puck 1 of mass m1 = 0.20 kg is...Ch. 9 - ILW In Fig. 9-21, projectile particle 1 is an...Ch. 9 - Ball B, moving in the positive direction of an x...Ch. 9 - After a completely inelastic collision, two...Ch. 9 - Two 2.0 kg bodies, A and B, collide. The...Ch. 9 - GO A projectile proton with a speed of 500 m/s...Ch. 9 - A 6090 kg space probe moving nose-first toward...Ch. 9 - SSM In Fig. 9-70, two long barges are moving in...Ch. 9 - Prob. 78PCh. 9 - SSM ILW A rocket that is in deep space and...Ch. 9 - An object is tracked by a radar station and...Ch. 9 - The last stage of a rocket, which is traveling at...Ch. 9 - Pancake collapse of a tall building. In the...Ch. 9 - Prob. 83PCh. 9 - Figure 9-73 shows an overhead view of two...Ch. 9 - Speed deamplifier. In Fig. 9-74, block 1 of mass...Ch. 9 - Speed amplifier. In Fig. 9-75, block 1 of mass m1...Ch. 9 - A ball having a mass of 150 g strikes a wall with...Ch. 9 - A spacecraft is separated into two parts by...Ch. 9 - SSM A 1400 kg car moving at 5.3 m/s is initially...Ch. 9 - ILW A certain radioactive parent nucleus...Ch. 9 - A 75 kg man rides on a 39 kg cart moving at a...Ch. 9 - Two blocks of masses 1.0 kg and 3.0 kg are...Ch. 9 - Prob. 93PCh. 9 - An old Chrysler with mass 2400 kg is moving along...Ch. 9 - SSM In the arrangement of Fig. 9-21, billiard ball...Ch. 9 - A rocket is moving away from the solar system at a...Ch. 9 - The three balls in the overhead view of Fig. 9-76...Ch. 9 - A 0.15 kg ball hits a wall with a velocity of 5.00...Ch. 9 - Prob. 99PCh. 9 - In a game of pool, the cue ball strikes another...Ch. 9 - Prob. 101PCh. 9 - In Fig. 9-79, an 80 kg man is on a ladder hanging...Ch. 9 - In Fig. 9 80, block 1 of mass m1 = 6.6 kg is at...Ch. 9 - Prob. 104PCh. 9 - SSM A 3.0 kg object moving at 8.0 m/s in the...Ch. 9 - A 2140 kg railroad flatcar, which can move with...Ch. 9 - SSM A 6100 kg rocket is set for vertical firing...Ch. 9 - A 500.0 kg module is attached to a 400.0 kg...Ch. 9 - SSM a How far is the center of mass of the...Ch. 9 - A 140 g ball with speed 7.8 m/s strikes a wall...Ch. 9 - SSM A rocket sled with a mass of 2900 kg moves at...Ch. 9 - SSM A pellet gun fires ten 2.0 g pellets per...Ch. 9 - A railroad car moves under a grain elevator at a...Ch. 9 - Figure 9-82 shows a uniform square plate of edge...Ch. 9 - SSM At time t = 0, force F1=(4.00i+5.00j) N acts...Ch. 9 - Two particles P and Q are released from rest 1.0 m...Ch. 9 - A collision occurs between a 2.00 kg particle...Ch. 9 - In the two-sphere arrangement of Fig. 9-20, assume...Ch. 9 - In Fig. 9-83, block 1 slides along an x axis on a...Ch. 9 - A body is traveling at 2.0 m/s along the positive...Ch. 9 - An electron undergoes a one-dimensional elastic...Ch. 9 - Prob. 122PCh. 9 - An unmanned space probe of mass m and speed v...Ch. 9 - A 0.550 kg ball falls directly down onto concrete,...Ch. 9 - An atomic nucleus at rest at the origin of an xy...Ch. 9 - Particle 1 of mass 200 g and speed 3.00 m/s...Ch. 9 - During a lunar mission, it is necessary to...Ch. 9 - A cue stick strikes a stationary pool ball, with...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY