Principles of Physics
Principles of Physics
5th Edition
ISBN: 9781133712725
Author: SERWAY
Publisher: CENGAGE CO
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9, Problem 56P

(a)

To determine

To show: The acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2

(a)

Expert Solution
Check Mark

Answer to Problem 56P

The acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2 .

Explanation of Solution

The formula to calculate the relative momentum is,

p=mu1(u/c)2

Here,

m is the mass of the electric charge.

c is the speed of the light.

u is the speed of the electric charge.

The formula to calculate the force on the electric charge is,

F=qE

Here,

q is the charge of the electric charge.

E is the magnitude of the electric field.

The formula to calculate the Force due to motion is,

F=dpdt

The force on the electric charge due to motion must be equal to that of the force due to electric field.

Substitute qE for F in above equation to find dpdt .

qE=dpdt

Substitute mu1(u/c)2 for p in above equation.

qE=ddt(mu1(u/c)2)qE=ddt[mu(1u2c2)12]qE=m(1u2c2)12dudt+12mu(1u2c2)32(2uc2)dudtqEm=dudt[1(1(u/c)2)32]

Further solve the above equation.

dudt=qEm(1u2c2)3/2 (1)

The formula to calculate the acceleration is,

a=dudt

Substitute a for dudt in equation (1).

a=dudt=qEm(1u2c2)3/2

Conclusion

Therefore, the acceleration of the particle in the x direction is a=dudt=qEm(1u2c2)3/2 .

(b)

To determine

The significance of the dependence of the acceleration on the speed.

(b)

Expert Solution
Check Mark

Answer to Problem 56P

The significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.

Explanation of Solution

The formula to calculate the acceleration of the charge is,

a=dudt=qEm(1u2c2)3/2

As the speed of charge approaches to the speed of light, the acceleration approaches to zero.

When the speed of the charge is very small as compared to that of the speed of the light the above equation can be transformed.

a=dudt=qEm

So the relative expression is transformed to the classical expression when the speed of the charge is very small as compared to that of the speed of the light.

Conclusion

Therefore, the significance of the dependence of the acceleration on the speed is that when the speed of the charge is very small as compared to that of the speed of light the relative expression is transformed to the classical expression.

(c)

To determine

The speed and the position of the charge particle at time t .

(c)

Expert Solution
Check Mark

Answer to Problem 56P

The speed of the charge particle at time t is qEctm2c2+q2E2t2 and the position of the charge particle at time t is cqE(m2c2+q2E2t2mc) .

Explanation of Solution

The formula to calculate the acceleration of the charge is,

dudt=qEm(1u2c2)3/2

Integrate the above equation from velocity 0 to v and time 0 to t to find the total velocity.

0udu(1u2c2)3/2=0tqEmdtu(1u2c2)1/2=qEtmu2=(qEtm)2(1u2c2)u=qEctm2c2+q2E2t2

Thus the speed of the particle at time t is qEctm2c2+q2E2t2 .

The formula to calculate the position of the particle is,

dxdt=u

Substitute qEctm2c2+q2E2t2 for u in above equation to find the value of x .

dxdt=qEctm2c2+q2E2t2

Integrate the above equation from position 0 to x and time 0 to t to find the final position.

0xdx=0tqEctm2c2+q2E2t2dtx=cqE[m2c2+q2E2t2]0t=cqE(m2c2+q2E2t2mc)

Conclusion

Therefore, the speed of the charge particle at time t is qEctm2c2+q2E2t2 and the position of the charge particle at time t is cqE(m2c2+q2E2t2mc) .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An electron having an initial horizontal velocity of magnitude1.00 * 109 cm/s travels into the region between two horizontal metalplates that are electrically charged. In that region, the electron travelsa horizontal distance of 2.00 cm and has a constant downward accelerationof magnitude 1.00 * 1017 cm/s2 due to the charged plates.Find (a) the time the electron takes to travel the 2.00 cm, (b) the verticaldistance it travels during that time, and the magnitudes of its (c)horizontal and (d) vertical velocity components as it emerges fromthe region.
Two electric force vectors act on a particle. Their x-components are 14.5 N and −7.35 N and their y-components are −12.0 N and −4.70 N, respectively. For the resultant electric force, find the following. (a) the x-component  (b) the y-component (c) the magnitude of the resultant electric force  (d) the direction of the resultant electric force, measured counterclockwise from the positive x-axis
An electron, with an initial horizontal velocity of magnitude 2.44 × 109 cm/s, travels into the region between two horizontal metal plates that are electrically charged. In that region, it travels a horizontal distance of 2.18 cm and has a constant downward acceleration of magnitude 3.13 × 1017 cm/s2 due to the charged plates. Find (a) the time required by the electron to travel the 2.18 cm and (b) the vertical distance it travels during that time. Also find the magnitudes of the (c) horizontal and (d) vertical velocity components of the electron as it emerges.

Chapter 9 Solutions

Principles of Physics

Ch. 9 - Which of the following statements are fundamental...Ch. 9 - Prob. 6OQCh. 9 - Prob. 7OQCh. 9 - Prob. 8OQCh. 9 - Two identical clocks are set side by side and...Ch. 9 - You measure the volume of a cube at rest to be V0....Ch. 9 - A train is approaching you at very high speed as...Ch. 9 - Explain why, when defining the length of a rod, it...Ch. 9 - A particle is moving at a speed less than c/2. If...Ch. 9 - Prob. 5CQCh. 9 - Prob. 6CQCh. 9 - Prob. 7CQCh. 9 - (a) “Newtonian mechanics correctly describes...Ch. 9 - Prob. 9CQCh. 9 - (i) An object is placed at a position p > f from a...Ch. 9 - With regard to reference frames, how does general...Ch. 9 - In a laboratory frame of reference, an observer...Ch. 9 - Prob. 2PCh. 9 - Prob. 3PCh. 9 - An astronaut is traveling in a space vehicle...Ch. 9 - At what speed does a clock move if it is measured...Ch. 9 - Prob. 6PCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Prob. 10PCh. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - A friend passes by you in a spacecraft traveling...Ch. 9 - Prob. 14PCh. 9 - Prob. 15PCh. 9 - Prob. 16PCh. 9 - Prob. 17PCh. 9 - Prob. 18PCh. 9 - An enemy spacecraft moves away from the Earth at a...Ch. 9 - Prob. 20PCh. 9 - Figure P9.21 shows a jet of material (at the upper...Ch. 9 - Prob. 22PCh. 9 - Prob. 23PCh. 9 - Prob. 24PCh. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Prob. 28PCh. 9 - Prob. 29PCh. 9 - Prob. 30PCh. 9 - Prob. 31PCh. 9 - Prob. 32PCh. 9 - Prob. 33PCh. 9 - Prob. 34PCh. 9 - Prob. 35PCh. 9 - Prob. 36PCh. 9 - Prob. 37PCh. 9 - Prob. 38PCh. 9 - Prob. 39PCh. 9 - Prob. 40PCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 43PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - Prob. 46PCh. 9 - Prob. 47PCh. 9 - Prob. 48PCh. 9 - Prob. 49PCh. 9 - Prob. 50PCh. 9 - Prob. 51PCh. 9 - Prob. 52PCh. 9 - An alien spaceship traveling at 0.600c toward the...Ch. 9 - Prob. 54PCh. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 57PCh. 9 - Prob. 58PCh. 9 - Spacecraft I, containing students taking a physics...Ch. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Owen and Dina are at rest in frame S, which is...Ch. 9 - A rod of length L0 moving with a speed v along the...Ch. 9 - Prob. 65P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY