Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
Question
Book Icon
Chapter 9, Problem 9.22P

(a)

To determine

The maximum possible elastic modulus in the polymer that will result in the maximum allowable clamping force.

(a)

Expert Solution
Check Mark

Answer to Problem 9.22P

The maximum possible elastic modulus in the polymer that will result in the maximum allowable clamping force is 2GPa .

Explanation of Solution

Given:

The length of the polymer is 0.05m .

The change in length of the polymer is 0.0001m .

The maximum clamping force is 1×104N .

Formula Used:

Write the expression for the strain in the polymer as:

  ε=Δll …… (I)

Here, ε is the elastic strain in the material, Δl is the change in length of the polymer and l is the length of the polymer.

Write the expression for the stress acting on the polymer as:

  σ=FA …… (II)

Here, F is the clamping force and A is the cross sectional area.

Write the expression for the elastic modulus in the polymer as:

  E=σε …… (III)

Here, σ is the stress acting on the polymer.

Calculation:

Substitute 0.05m for l and 0.0001m for Δl in equation (I)

  ε=0.0001m0.05m=0.02

Substitute 1×104N for F and (0.05m)2 for A in equation (II)

  σ=1×104N(0.05m)2=4×106Pa=4MPa

Substitute 4×106Pa for σ and 0.02 for ε in equation (III)

  E=4×106Pa0.002=2×109Pa×109GPa1Pa=2GPa

Conclusion:

Thus, the maximum possible elastic modulus in the polymer that will result in the maximum allowable clamping force is 2GPa .

(b)

To determine

The minimum allowable viscosity of the polymer.

(b)

Expert Solution
Check Mark

Answer to Problem 9.22P

The minimum allowable viscosity of the polymer is 30×1015Pas .

Explanation of Solution

Given:

The length of the polymer is 0.05m .

The change in length of the polymer is 0.0001m .

The maximum clamping force is 1×104N .

Formula Used:

Write the expression for the relation of viscosity and decay of stress.

  σσ0=exp(E3ηt) …… (IV)

Here, σ is the stress in the polymer after one year, σ0 is the initial stress in the polymer, η is the viscosity of the polymer and t is the expected life of the polymer.

Calculation:

Substitute 4×106Pa for σ0 , 2×106Pa for σ , 2×109Pa for E and 365days for t in equation (IV).

  2×106Pa4×106Pa=exp(2×109Pa3η×(365days)×(24h1day)×(60min1h)×(60s1min))0.5=exp(2.1×1016η)ln(0.5)=ln[exp(2.1×1016η)]η=30×1015Pas

Conclusion:

Thus, the minimum allowable viscosity of the polymer is 30×1015Pas .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The two sheets of soft plastic are bonded to the central steel strip. Determinethe magnitude of the largest force P that can be safely applied to the steel strip andthe corresponding displacement of the strip. For the plastic, use tw = 10 ksi and G = 800 ksi. Neglect deformation of the steel strip.
the strain on the Z axis is -0.1748 mm/mm . Height of structure is : H=8 cm=80 mm Length is : L=4 cm=40 mm Angle is : α=50° Thickness is : t=5 mm Strain on x-axis is : εx=0.26 mm/mm So what is the strain type of the structure in the Z axis?
The thin bar is subjected to an increase in temperature along its axis. Determine the end B of the bar due to the increase in temperature y; b) the average normal strain in the bar.The normal strain is 70X10^(-2) z^1/3, where z is expressed in meters. L = 300 mm.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning