EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
EBK MATERIALS FOR CIVIL AND CONSTRUCTIO
4th Edition
ISBN: 8220102719569
Author: ZANIEWSKI
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9.35QP
To determine

The design asphalt content according to the Marshall procedure.

Blurred answer
Students have asked these similar questions
The mix design for an asphalt concrete mixture requires 2 to 6% minus 0.075 mm. The three aggregates shown in Table P.5.34 are available. TABLE P5.34 Minus 0.075 mm Coarse 0.5% Intermediate 1.5% Fine Aggregate 11.5% Considering that approximately equal amounts of coarse and intermediate aggregate will be used in the mix, what is the percentage of fine aggregate that will give a resulting minus 0.075 mm in the mixture in the middle of the range, about 4%?
The mixture maximum specific gravity at 5.0 % asphalt binder content is 2.495. The asphalt specific gravity is 1.030. Compute the aggregate effective specific gravity. Estimate the mixture maximum specific gravity at 6.0 % asphalt binder content.
The Marshall method was used to design an asphalt concrete mixture. A PG 64-22 asphalt cement with a specific gravity (Gb) of 1.031 was used. The mixture contains a 9.5 mm nominal maximum particle size aggregate with a bulk specific gravity (Gsb) of 2.696. The theoretical maximum specific gravity of the mix (Gmm) at asphalt content of 5.0% is 2.470. Trial mixes were made with average results as shown in the following table:Determine the design asphalt content using the Asphalt Institute design criteria formedium traffic Table . Assume a design air void content of 4% when usingTable
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning