Experiment #5 – Aspirin Synthesis Lab Report
.pdf
keyboard_arrow_up
School
Wilfrid Laurier University *
*We aren’t endorsed by this school
Course
110
Subject
Chemistry
Date
Feb 20, 2024
Type
Pages
10
Uploaded by DeaconSnow11815
1
Abstract
The purpose of this lab is to synthesize aspirin from the mixture of acetic anhydride and
salicylic acid. This resulted in creating crystals and used to filter in the Hirsh funnel. Creating a
vacuum when pouring the liquid will allow the solid to be trapped when the liquid gets drained.
This filtered product was impure and solid acetylsalicylic acid, with a mass of 0.12g. The
melting point of this ASA was determined and compared with the standard ASA. This was done
using a Digimelt melting apparatus which involved placing the solid in a capillary tube into the
machine to find an accurate melting range. The initial melting point of Asa was 102.3
℃
and
final readings of 105.7
℃
. The prepared ASA was involved in the Iron (III) salicylate dianion
solution with NaOH. The diluted sample was mixed with FeCl. A vernier Go Direct calorimeter
was used to measure the absorbance of 5 standard solutions and construct the Beer’s law plot
graph. The mass of pure ASA and concentration values were determined. Also, the percentage
purity was calculated as 99% and percentage yield of 34%. This means that only 34% of aspirin
was synthesized out of 100% and the aspirin was 99% pure. In conclusion, this experiment was
not successful due to low percentage yield.
Procedure
For the procedure, see lab manual (CH110 Lab Manual, Fall 2023) pages 121-124. No deviations
were made to this aspirin synthesis experiment. Wilfrid Laurier University Chemistry
Department. Fall 2023. Pages 117-127 in the Chemistry 110 Lab Manual. Wilfrid Laurier
University, ON, Canada
Observations/Results
Table 1: Before, During, After Qualitative Observations of Solutions From Part A-E
Part
Solutions
2
A
Salicylic Acid: white, odourless powder
Phosphoric Acid: clear, yellow, transparent liquid
Acetic Anhydride: clear, liquid, vinegar odour
DI water (4 drops): some liquid but solid particles formed
DI water (7 drops): white crystal-like solid participles at bottom of tube
B
Prepared ASA Before: wet, cloudy particles, viscous
Prepared ASA After: sand like texture, odourless, white, solid
C
Standard ASA sample
Before heat: small, dry solid, white, very grainy,
After heat: clear, colourless, liquid
Prepared ASA sample
Before heat: powder texture, grainy, opaque, solid, white
After heat: clear, colourless, liquid
D
NaOH: water like viscosity, odourless, colourless, clear
Prepared ASA sample: white, solid, grainy
Mixture of NaOH and prepared ASA sample: clear, colourless, liquid
FeCl
3
: liquid, yellow, clear, odourless
Mixture of NaOH + ASA + FeCl
3
: dark brown, liquid, opaque, odourless
E
Curvette A: dark purple/brown liquid
Curvette B: dark purple/brown liquid
Curvette C: dark reddish brown liquid
Curvette D: light brown liquid
Curvette E: yellow liquid
Prepared ASA sample: dark brown liquid
Table 2: Quantitative Data Collected From Part A-C
Mass of salicylic acid (g)
0.18
Volume of acetic anhydride (mL)
0.34
Mass of filter paper (g)
0.62
Mass of “impure” ASA + filter paper (g)
0.80
Mass of prepared “impure” ASA (g)
0.12
Melting Point range of prepared ASA (
℃
)
102.3
℃
- 105.7
℃
Melting Point range of standard ASA (
℃
)
138.9
℃
- 143.5
℃
Table 3: Results from Part D-E
3
Sample
Absorbance Reading
Standard A
1.30
Standard B
1.02
Standard C
0.80
Standard D
0.55
Standard E
0.25
Prepared ASA
0.88
Questions
1.
Construct a beer’s law plot of Absorbance versus Concentration and add a computer
generated line of best fit. Show the slope intercept form of the best fit line.
2.
a)
Determine the concentration of your prepared iron (III) Salicylate Dianion solution
(pure ASA) in the 10.0 mL of 1.0 M in mg/mL (part D) using the Beer’s law plot
completed in Question 1.
y = 7.2873x + 0.0115
0.88 = 7.2873x + 0.0115
0.88 - 0.0115 = 7.2873x
x =
0.8685
7.2873
x = 0.119 mg/mL
b)
Then, calculate the mass (in mg) of pure ASA knowing that the two consecutive dilutions
were done to prepare the solution. Show all of your work.
C
3
x V
3
= C
2
x V
2
4
= C
2
𝐶3 ? 𝑉3
𝑉2
C
2
=
(0.119 ??/?𝐿)(25?𝐿)
(5?𝐿)
C
2
= 0.595 mg/mL
C
1
x V
1
= C
2
x V
2
C
1
=
𝐶2 ? 𝑉2
𝑉1
C
1
=
(0.595 ??/?𝐿)(100?𝐿)
(5?𝐿)
C
1
= 11.9 mg/mL
m = CV
m = (11.9 mg/mL)(10mL)
m = 119 mg of pure ASA
3.
A standard “Bayer Aspirin'' tablet contains 325 mg of acetylsalicylic acid by weight. If
the absorbance of this commercial tablet was measured to be 2.57, is the claim made by
the drug company accurate? Explain your answer and show your work.
y = 7.2873x + 0.0115
(2.57) = 7.2873x + 0.0115
2.57 - 0.0115 = 7.2873x
x =
2.5585
7.2873
x = 0.351 mg/mL
C
3
x V
3
= C
2
x V
2
= C
2
𝐶3 ? 𝑉3
𝑉2
C
2
=
(0.351 ??/?𝐿) (25?𝐿)
(5?𝐿)
C
2
= 1.755 mg/mL
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Can you solve and complete this chart
arrow_forward
Which of these is NOT true of a good recrystallization solvent?
Which of these is NOT true of a good recrystallization solvent?
a) The compound is insoluble in the solvent when it is cold.
b) The solvent boiling temperature is at least 40 °C.
c) The solvent has many impurities.
d) The compound is soluble in the solvent when it is hot.
arrow_forward
Please send me the question in 20 minutes it's very urgent plz
arrow_forward
Preparation of 3% (vol/vol) Alcohol Solution
arrow_forward
Q2. What does “crude” product mean?
Q3. What is the advantage of using Buchner filtration in filtering crystals?
Q4. Briefly explain how scratching the wall of the glass flask can help formation of crystals.
Q5. Briefly explain why crystals form as the solvent cools during recrystallization.
arrow_forward
The following test on compounds X and Y were done and the results, list the observations in the table below. Complete the inferences for each test.
arrow_forward
A schematic diagram for the provided procedure
arrow_forward
1. Explain the importance of using a thermometer in the simple distillation setup.
2. Enumerate the characteristics of a substance for it to be separated from the
heterogeneous mixture by steam distillation.
3. How does steam facilitate the distillation of essential oils?
4. Discuss some applications of simple distillation and steam distillation. Explain why you can
use each method for the chosen application.
arrow_forward
You have completed your recrystallization process, but you did not get any crystals back after you cooled your solvent. Troubleshoot this situation. Briefly describe reasons why your crystals did not form, and describe how you will get them back.
arrow_forward
Explain why one would recrystallize a solid from a solvent pair instead of a single solvent. Explain how it works in terms of solubilities.
please give detail, will only rate if sufficent detail is given. thank you!
arrow_forward
a-) Compound X is steam distilled at 92C under the pressure of 0.977 atm. Amount of water in distillate is found to be 12.1023 g and amount of the compound X is 19.4023 g. Determine the molecular weight of compound X. (Pw=0.746 atm at 92C)
b-) Determine the % error in your experiment if the actual molecular weight of the compound X is 106.16 g/mol.
arrow_forward
what is the correct ans
arrow_forward
Students were tasked to conduct a recrystallization experiment to test the ability of the newly discovered solvents in their laboratory to purify and separate a mixture containing compounds X and Y. The solubility of the two compounds in g/50 mL of hot and cold solvents are given by the photo.
arrow_forward
A mixture of the two compounds shown below is dissolved in ether. Using the information given in the experiment, select all the correct statements regarding the extraction
and isolation of the two compounds.
lose
0000
X
OH
A. X can be extracted from the organic layer using sodium hydroxide.
B. Y can precipitate out of the aqueous layer by the addition of sodium hydroxide to the salt of Y.
C. X can precipitate out of the aqueous layer by the addition of sodium hydroxide to the salt of X.
D. Y can be extracted from the organic layer using sodium hydroxide.
arrow_forward
3. Describe the characteristics that a crystal obtained through recrystallization must have, the final crystal, not the solvent.
arrow_forward
CREATE A SCHEMATIC DIAGRAM FOR THIS PROCEDURE:
C. Preparation and storage of standard solutions
1. Use the weighed and transferred NaCl powder in procedure B. Dissolve it in about 10 mL distilled water. Use a stirring rod to gently stir the solution until it has been dissolved to an extent. Make sure you will not incur any noise while stirring.
2. When the NaCl powder is partially dissolved, transfer the resulting solution into a 100 mL volumetric flask. Use a stirring rod and funnel.
3. Repeat steps 1 and 2 until no NaCl remains in the beaker and until you are almost at the mark of the volumetric flask.
4. Rinse the last portion of the solution from the stirring rod into the volumetric flask with a stream of water from the wash bottle. Rinse the funnel and remove it. Dilute the solution in the flask using a Pasteur pipette until the bottom of the meniscus is even with the graduation mark.
5. Put a stopper on the volumetric flask. Invert the glassware up and down around five…
arrow_forward
Filter paper
Saturated KNO; solution
259
Figure 1. Experimental apparatus.
Experimental Procedure
Part 1. Copper and Zinc Metal
1) Select a piece of copper and a piece of zinc metal wire from the containers in the hood.
2) Clean the surface of the metal wires with the steel wool. Wipe clean with a dry paper
towel.
3) Obtain a plastic well plate. Fill one well with 10 drops of the Copper ion solution from
the dropper bottle. Label this well with a Sharpie marker so that you remember which
solution you filled it with,
4) Repeat step 3 with Zinc ion solution. Select a well right next to the well in step 3 so
that the two wells with Copper and Zinc ion solution are right next to each other.
5) Obtain a small dry strip of filter paper. You may have to cut a large piece of filter
paper down to the appropriate size. It should be exactly this big C
It's OK to tear the filter paper with your hands. Using the drop bottle, saturate the filter
paper strip with KNO; solution. Gently place one end…
arrow_forward
Which statement about liquid-liquid extraction is not correct? *
A- A solvent must be available that is miscible with the solution containing the substance to be extracted.
B- The solvent used for extraction must have a good ability to dissolve the desired substance.
C- The denser solution forms the bottom layer in the extraction funnel.
D- The extraction funnel must be vented during the extraction procedure to prevent excessive build-up of pressure inside the extraction funnel.
E- All these statements are correct.
arrow_forward
Pls do fast within 5 minutes and i will give like for sure
Solution must be in typed form
To plan a liquid–liquid extraction we need to know the solute’s distribution ratio between the
two phases. One approach is to carry out the extraction on a solution that contains a known
amount of solute. After the extraction, we isolate the organic phase and allow it to evaporate,
leaving behind the solute. In one such experiment, 1.235 g of a solute with a molar mass of
117.3 g/mol is dissolved in 10.00 mL of water. After extracting with 5.00 mL of toluene, 0.889
g of the solute is recovered in the organic phase.
If we extract 20.00 mL of an aqueous solution that contains
the solute using 10.00 mL of toluene, what is the extraction efficiency?
arrow_forward
Chemistry
Which lab technique(s) can be performed on solid, somewhat soluble samples?
Melting Range Determination or Recrystallization.
Melting Range Determination. Not Recrystallization.
Neither Recrystallization nor Melting Range Determination.
Recrystallization. Not Melting Range Determination.
arrow_forward
Weigh out 5g of table salt. Dissolve it in 50mL of distilled water in a container using a stirrer and label appropriately. Calculate the concentration in terms of percent mass per volume.
arrow_forward
i need help determining amount
recovered in an extraction. i started with
a .51g mix of naphlathene/benzoic acid.
then, i ended up with the organic in the
flask weighing 56g, with the initial weight
of the flask without product being 46g.
how do i determine amount recovered
AND the % recovery?
arrow_forward
During recrystallization process, if your solution has come to room temperature and no
crystals have formed, which of the following methods you can employ to entice crystals to
grow.
i. By adding more solvent to the solution
ii. By scratching on the bottom of flask containing the solution
iii. By adding the seed crystals
all (i) (ii) and (iii) are correct
Only (i) is correct
Only (i) and (ii) are correct
Only (ii) is correct
Only (ii) and (iii) are correct
arrow_forward
How are solvents chosen for recrystallization? (single solvent or mixed-solvent system).What are the properties of a good solvent system? How are crystals collected?
arrow_forward
10 mL of 10 % sodium sulphate solution into a clean test tube. Add 1 drop of 10 % barium chloride. What do you observe? Write an equation to explain your observations in your lab report. C2. Measure out a fresh 10 mL portion of 10 % sodium sulphate into another test tube. Making sure to count the drops, use a dropper to add 30 % calcium chloride solution. Swirl the solution after each drop. Continue until a white precipitate occurs. Write an equation to explain your observations. Which solubility product has the smaller numerical value, that for calcium sulphate or barium sulphate? Explain how you know this is true. C3. Measure out another 10 mL portion of 10 % sodium sulphate into a clean test tube. Add 8 drops of 50 % sulphuric acid and swirl. Count the number of drops (swirl after each drop) of 30 % calcium chloride needed to produce a precipitate of calcium sulphate. Explain why the number of drops of calcium chloride differs in the two experiments. I need equations, observations…
arrow_forward
5.
Do you think the toluene/water combination would be a good binary
solvent system for a mixed recrystallization? Yes or No. Explain your answer.
arrow_forward
Experiment: UV-Vis Spectrophotometry and Beer’s Law
Absorption of Light of Dyes in Beverages
Explain the purpose of using a blank solution in this experiment.
arrow_forward
A student is trying to perform a single solvent recrystallization of compound X using methanol.
He observed that compound X is insoluble in methanol at room temperature and also insoluble at
boiling temperature. Is methanol a good recrystallization solvent?
A. Yes, you want to only dissolve the impurities and the sample should remain undissolved.
B. No, you need a solvent which fully dissolves the sample only at room temperature so that
it can crystallize in the ice bath.
C. No, you need a solvent which dissolves the sample only at boiling temperature for
selective crystallization upon cooling.
D. Yes, you don't want the solvent to fully dissolve the sample at both temperatures so that it
will crystallize in the cooling step.
A student obtained a supersaturated solution in the recrystallization experiment. Which of the
following methods should he/she perform to induce crystal growth? (Can select more than 1)
A. Add a crystal of pure acetylsalicylic acid
B. Place the solution in an ice…
arrow_forward
Q) Which experimental steps can a student perform to be sure that all the water has been removed from the hydrate?
Hi I did the 'dehydration of an inorganic salt hydrate' experiment.
I heated MgSO4 hydrates for 10 minutes, and I weighted the gram of MgSO4 and water.
I realized that all my results were different by trials.
So, I don't know what should I do to make sure that all the water has been removed.
My answer is
Calculate the percentage of water mass in hydrates, and compare with the true value of 'the percentage of water mass in hydrates'. If the error percentage is low, it means that water is removed from the hydrate well.
Am I right?
Thank you.
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Related Questions
- Can you solve and complete this chartarrow_forwardWhich of these is NOT true of a good recrystallization solvent? Which of these is NOT true of a good recrystallization solvent? a) The compound is insoluble in the solvent when it is cold. b) The solvent boiling temperature is at least 40 °C. c) The solvent has many impurities. d) The compound is soluble in the solvent when it is hot.arrow_forwardPlease send me the question in 20 minutes it's very urgent plzarrow_forward
- Preparation of 3% (vol/vol) Alcohol Solutionarrow_forwardQ2. What does “crude” product mean? Q3. What is the advantage of using Buchner filtration in filtering crystals? Q4. Briefly explain how scratching the wall of the glass flask can help formation of crystals. Q5. Briefly explain why crystals form as the solvent cools during recrystallization.arrow_forwardThe following test on compounds X and Y were done and the results, list the observations in the table below. Complete the inferences for each test.arrow_forward
- A schematic diagram for the provided procedurearrow_forward1. Explain the importance of using a thermometer in the simple distillation setup. 2. Enumerate the characteristics of a substance for it to be separated from the heterogeneous mixture by steam distillation. 3. How does steam facilitate the distillation of essential oils? 4. Discuss some applications of simple distillation and steam distillation. Explain why you can use each method for the chosen application.arrow_forwardYou have completed your recrystallization process, but you did not get any crystals back after you cooled your solvent. Troubleshoot this situation. Briefly describe reasons why your crystals did not form, and describe how you will get them back.arrow_forward
- Explain why one would recrystallize a solid from a solvent pair instead of a single solvent. Explain how it works in terms of solubilities. please give detail, will only rate if sufficent detail is given. thank you!arrow_forwarda-) Compound X is steam distilled at 92C under the pressure of 0.977 atm. Amount of water in distillate is found to be 12.1023 g and amount of the compound X is 19.4023 g. Determine the molecular weight of compound X. (Pw=0.746 atm at 92C) b-) Determine the % error in your experiment if the actual molecular weight of the compound X is 106.16 g/mol.arrow_forwardwhat is the correct ansarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY