PTEC_116_Module_01_Exercise
.docx
keyboard_arrow_up
School
Coastline Community College *
*We aren’t endorsed by this school
Course
116
Subject
Mechanical Engineering
Date
Feb 20, 2024
Type
docx
Pages
4
Uploaded by LieutenantMaskPheasant35
Name:
Date:
PTEC C116 Instrumentation 1 – Module 01 Written Exercise – 5 points
Process variables affect each other on a continuous basis and processes are designed to accounts for these dependences. The exercises below will help you to apply what you’ve learned about the relationships between process variables, such as pressure, temperature, level, and flow.
Exercise #1: The relationship between temperature and pressure in a closed vessel
The temperature inside a closed vessel is 70 degrees F and the pressure of the contained gas is atmospheric pressure (14.7 PSIA). 1.
If the temperature increases to 100 degrees, what is the pressure (measured in PSIA) inside the vessel? Show the equation and your calculations below.
P1/T1=P2/T2
14.7/70=P2/100
(14.7x100) / 70 = 21 PSIA
2.
What is the pressure measured in PSIG at 70 degrees?
PSIG=PSIA-14.7
PSIG = 14.7-14.7
PSIG= 0
3.
What is the pressure measured in PSIG at 100 degrees?
PSIG=PSIA-14.7
PSIG = 21-14.7
PSIG= 6.3
4.
A fluid is pumped into a closed vessel at 65 degrees F. After the vessel is filled, the pressure is increased from 14.7 PSIA to 29.4 PSIA. What is the temperature of the pressurized fluid? Show the equation and your calculations below.
P1/T1=P2/T2
14.7/65=29.4/T2
(65x29.4)/14.7 = 130 degrees F
Exercise #2: The relationship between pressure and head
Concepts to remember:
●
Static head, or "head" is a common term for liquid level or height, and is usually expressed in feet or in PSI.
●
Static pressure depends on gravity, the density of the fluid (sometimes expressed as specific gravity), and the height of the fluid. ●
As the fluid height increases, static pressure increases. ●
As the fluid density/specific gravity increases, static pressure increases.
To find static pressure at any point in a column of liquid:
●
Calculate the specific gravity of the liquid. Specific gravity is the ratio of the density of liquid to the density of water.
●
Multiply the specific gravity by 0.433. ●
Multiply by the liquid head in feet above the point being measured.
●
The following formula can be used to calculate static pressure in PSI:
Formula
Description
P=(SG) (0.433)(h) Where:
P = the pressure at the point being measured in the tank (in PSI)
h = height of the fluid in feet above the measured point
SG = the specific gravity of the fluid
(0.433) is a constant and represents the fact that one foot of water exerts .433 lbs of pressure at one foot
Exercise #3 – Practical Problem
A vented tank is filled with 15 feet of oil that has specific gravity of .75. What is the pressure of the liquid at each point in the tank in PSI? Show your calculations below.
Your preview ends here
Eager to read complete document? Join bartleby learn and gain access to the full version
- Access to all documents
- Unlimited textbook solutions
- 24/7 expert homework help
Related Questions
Instrumentation & Measurements
This homework measures your capability to design/analyze various components/variables of ameasurement system based on what you have studied.
Question is Attached in image. Thank you.
arrow_forward
Learning Goal:
To use fundamental geometric and statics methods to determine the state of plane stress at the point on an element of material that is rotated clockwise through an angle from the in-
plane stress representation of the point.
The state of in-plane stress at a point on an element of material is shown. Let o,
the same point that is rotated through an angle of 0-35
45.0 ksi, o, 19.0 ksi, and Ty 12.0 kai. Use this information to represent the state of stress of
arrow_forward
Hello please show your correct and complete solution with schematic diagram and assumptions. Thanks ASAP!
Subject: Mechanical Engineering
arrow_forward
Problem 3:
Insulation
To=1
Toowwww
Steam
Tx2
T₂ T3
www www
R₁ R₁ R₂
www.T
R₂
Steam at T1 = 320 °C flows in a cast iron pipe (k= 80 W/m. °C) whose inner and outer diameters are
5 cm = 0.05 m and D₂ = 5.5 cm = 0.055 m, respectively. The pipe is covered with 3-cm-thick glass wool
insulation with k = 0.05 W/m. °C. Heat is lost to surroundings at T2 = 5 °C by natural convection and
radiation, with a combined heat transfer coefficient of h₂ = 18 W/m². °C. Taking the heat transfer coefficient
inside the pipe to be h₁ = 60 W/m². °C, determine the temperature drops across the pipe and the insulation.
The determination is based on a unit length of the pipe (L = 1 m).
Assumptions
1. Heat transfer is one-dimensional since there is no indication of any change with time.
2.
Heat transfer is one-dimensional since there is thermal symmetry about the centreline and no
variation in the axial direction.
3. Thermal conductivities are constant.
4. The thermal contact resistant at the interface is…
arrow_forward
You are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture
fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates
implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial
weight bearing activities.
Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to
verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into
solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending
test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the
yield stress for the Ti-6Al-4V…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…
arrow_forward
Problem 1: You are working in a consulting company that does a lot of hand calculations for designs in
Aerospace Industry for mechanical, thermal, and fluidic systems. You took the Virtual engineering
course, and you want to convince your boss and the team you work to move to modelling and simulation
in computers using a certain software (Ansys, Abaqus, etc). Discuss the benefits and pitfalls of computer
based models used within an industrial environment to solve problems in engineering.
arrow_forward
For the air compressor shown in Figure below, the air enters from a large area and
exit from small one, explain why?
Instructions for answering this question: The answer to this questian is required as handwritten where you are
aiso required to add a Handwritten integrity Statement. Pieose follow the below steps:
1 Write on a blank poper your AUM student ID, full name, course code, section and date
2 Write the following integrity statement and sign:
"7 offirm that I have neither given nor received any help on this assessment and that personally compieted it
on my own."
3. Write your onswer to the obove question as required
4. Put your Original Civil ID card or AUM ID card on the poper
5 Toke o picture or scan, and uplood
Important note: if handwritten document is submitted without the integrity stotement including ID (Civil ID or
AUM ID), then the related handwritten question(s) will not be groded.
arrow_forward
i need correct explanation my best wishes ton
arrow_forward
Task 3-a:
If you have four instruments used to measure a temperature of 50.02 C inside the factory. However, the
instruments gave different readings for different trials as follows:
Instrument 1 20
30
40
50
60
70
80
51
49
Instrument 2 49
49
49
49
49
49
49
49
49
Instrument 3 48.01
48.03
49.02
49.01
50.00
48.02
47.09
47.05
47.80
Instrument 4 17.01
17.02
17.09
17.03
17.01
17.03
15.09
19.02
17.00
1. Define the resolution of an instrument.
2. Define the sensitivity of an instrument, then explain how the sensitivity of an instrument can
be calculated.
3. Define the accuracy of an instrument system and explain using your own words how the
accuracies of different instruments are compared.
4. Define the precision of an instrument system and explain using your own words how the
precisions for different instruments are compared.
arrow_forward
Can someone please help me to answer all of the following questions thank you!!
arrow_forward
Please recheck and provide clear and complete step-by-step solution in scanned handwriting or computerized output thank you
arrow_forward
Per Bartleby honor code only 3 subparts of a question can be answered per submission. I have submitted 10, 11, 12, and 13 previously. Please answer 14, 15, 16
arrow_forward
Newton's Law of cooling states that the rate at which heat is lost by a heated body is
proportional to the difference in temperature between the body and the surrounding
medium. Match the following statements/phrases with the corresponding item in the
drop down box. Choices in the box
1. In accordance with the stated law obove, we have the equation?
2. If a thermometer is taken outdoors where the temperoture is 5 deg C, from a
room in which the temperature is 20 deg C and the reading drops 10 deg C in one
minute, the working equation is?
3. In the obove problem, separoting the variables and integrating will result to?
4. In the obove problem, how long, in minutes, after its removal from the room will
the reading be 6 deg C?
5. In the obove problem, ofter 30 seconds, whot will be the thermometer reading?
5.2
dT(body temp)/dt = k(Temp of medium - 5)
dr(body temp)/dt = k(Temp of body - Temp of medium)
Temp of body = Cenkt +5
2.5
13.7
dr(body temp)/dt = k(Temp of medium - Temp of body)…
arrow_forward
2 and3
arrow_forward
Please answer the 4th question
arrow_forward
Please give a complete solution in Handwritten format.
Strictly don't use chatgpt,I need correct answer.
Engineering dynamics
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (OW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/OW, Mean (+-)1SD NW/OW) were created. Analyse and Interpret the graphs attached.
arrow_forward
Basic Manufacturing Process with 2 Job Types +
Inspection
Time between job arrivals at a machining station is exponentially distributed with mean 4.4 minutes.
There are 2 types of jobs to be processed 30% of which is Type 1 and, 70% are of Type 2. Processing
times are exponentially distributed. Mean processing time for Type 1 is 4.8 minutes, for Type 2 it is
2.5 minutes.
After the job is processed, they go through an inspection process with one single inspector and an
inspection time with triangular distribution (1,2,3.5). Inspector decides whether the part is good
enough, scrap or should be reworked. 80% of the parts produced is good, 10 % is scrap and the rest
needs rework.
Rework is done by the same manufacturing machine. The priority among the parts will be Part1 first,
part2 second and reworks of both type comes later. Rework time is normally distributed with mean 2
minutes and 0,2 std dev.
Simulate the system for one 8-hour day.
arrow_forward
Analysis and Interpretation of vertical Ground Reaction Forces. In this study, a volunteer was asked to walk on two force platforms under two different conditions. Condition 1- Normal Walk (NW), condition 2 - walking over an obstacle (ObsW). The right limb was the one to step on platform 1 in both conditions. The force platforms were used to measure the vertical ground reaction forces on the right limb. Data was collected on Vicon (Nexus) software and the attached graphs ( mean NW/ObsW, Mean (+-)1SD NW/ObsW) were created. Analyse ,Interpret the graphs and make a conclusion of the result attached.
arrow_forward
Follow the instructions carefully.
arrow_forward
Do the FMEA and i have attached the format for FMEA in fig
arrow_forward
Match the following statements with the term that best describes each statement. hooks law
creep
impact strength
proportional limit
fatigue
elastic
arrow_forward
Read each statement carefully and answer by True or False (if False then, correct
the statement).
1- Process control combines how physics, chemistry, and biology work in
operating equipment and an understanding of dynamic systems.
2- When a second letter is used in instrumentation symbols, e.g., Pressure
Indicator Controller (PIC), it defines the measured or initiating variables.
3- P&ID contains the sensor details such as physical principle and
measurement range.
4- FRC 82516: Flow Recording Controller, area no 825, process unit 8, loop
number 16.
5- P&ID excludes equipment identification.
arrow_forward
Please answer in 10 minutes i want the solution fast
Proportionality and scaling:
arrow_forward
6
arrow_forward
SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Related Questions
- Instrumentation & Measurements This homework measures your capability to design/analyze various components/variables of ameasurement system based on what you have studied. Question is Attached in image. Thank you.arrow_forwardLearning Goal: To use fundamental geometric and statics methods to determine the state of plane stress at the point on an element of material that is rotated clockwise through an angle from the in- plane stress representation of the point. The state of in-plane stress at a point on an element of material is shown. Let o, the same point that is rotated through an angle of 0-35 45.0 ksi, o, 19.0 ksi, and Ty 12.0 kai. Use this information to represent the state of stress ofarrow_forwardHello please show your correct and complete solution with schematic diagram and assumptions. Thanks ASAP! Subject: Mechanical Engineeringarrow_forward
- Problem 3: Insulation To=1 Toowwww Steam Tx2 T₂ T3 www www R₁ R₁ R₂ www.T R₂ Steam at T1 = 320 °C flows in a cast iron pipe (k= 80 W/m. °C) whose inner and outer diameters are 5 cm = 0.05 m and D₂ = 5.5 cm = 0.055 m, respectively. The pipe is covered with 3-cm-thick glass wool insulation with k = 0.05 W/m. °C. Heat is lost to surroundings at T2 = 5 °C by natural convection and radiation, with a combined heat transfer coefficient of h₂ = 18 W/m². °C. Taking the heat transfer coefficient inside the pipe to be h₁ = 60 W/m². °C, determine the temperature drops across the pipe and the insulation. The determination is based on a unit length of the pipe (L = 1 m). Assumptions 1. Heat transfer is one-dimensional since there is no indication of any change with time. 2. Heat transfer is one-dimensional since there is thermal symmetry about the centreline and no variation in the axial direction. 3. Thermal conductivities are constant. 4. The thermal contact resistant at the interface is…arrow_forwardYou are a biomedical engineer working for a small orthopaedic firm that fabricates rectangular shaped fracture fixation plates from titanium alloy (model = "Ti Fix-It") materials. A recent clinical report documents some problems with the plates implanted into fractured limbs. Specifically, some plates have become permanently bent while patients are in rehab and doing partial weight bearing activities. Your boss asks you to review the technical report that was generated by the previous test engineer (whose job you now have!) and used to verify the design. The brief report states the following... "Ti Fix-It plates were manufactured from Ti-6Al-4V (grade 5) and machined into solid 150 mm long beams with a 4 mm thick and 15 mm wide cross section. Each Ti Fix-It plate was loaded in equilibrium in a 4-point bending test (set-up configuration is provided in drawing below), with an applied load of 1000N. The maximum stress in this set-up was less than the yield stress for the Ti-6Al-4V…arrow_forwardAs an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forward
- As an engineer responsible for monitoring works in the area of mechanical systems, you must evaluate the following situation: a large client in the retail area has a refrigeration system where it stores some chilled or frozen products to be sold on the sales floor.Recently, the customer's maintenance department has been questioning the system's performance and requested an evaluation of the system's behavior. You went to the location and requested some information from the maintenance manager about the system, who provided the following data: - The system operates with R-134a refrigerant;- The refrigerated environment is maintained at 0°C and the external environment at 26°C;- The refrigerant flow rate in the system is 0.08 kg/s; In addition to the data provided, you carried out some tests and measured the temperature of the refrigerant fluid at some specific points in the system, such as the compressor inlet and condenser outlet, finding values of 0°C and 26°C respectively.…arrow_forwardProblem 1: You are working in a consulting company that does a lot of hand calculations for designs in Aerospace Industry for mechanical, thermal, and fluidic systems. You took the Virtual engineering course, and you want to convince your boss and the team you work to move to modelling and simulation in computers using a certain software (Ansys, Abaqus, etc). Discuss the benefits and pitfalls of computer based models used within an industrial environment to solve problems in engineering.arrow_forwardFor the air compressor shown in Figure below, the air enters from a large area and exit from small one, explain why? Instructions for answering this question: The answer to this questian is required as handwritten where you are aiso required to add a Handwritten integrity Statement. Pieose follow the below steps: 1 Write on a blank poper your AUM student ID, full name, course code, section and date 2 Write the following integrity statement and sign: "7 offirm that I have neither given nor received any help on this assessment and that personally compieted it on my own." 3. Write your onswer to the obove question as required 4. Put your Original Civil ID card or AUM ID card on the poper 5 Toke o picture or scan, and uplood Important note: if handwritten document is submitted without the integrity stotement including ID (Civil ID or AUM ID), then the related handwritten question(s) will not be groded.arrow_forward
- i need correct explanation my best wishes tonarrow_forwardTask 3-a: If you have four instruments used to measure a temperature of 50.02 C inside the factory. However, the instruments gave different readings for different trials as follows: Instrument 1 20 30 40 50 60 70 80 51 49 Instrument 2 49 49 49 49 49 49 49 49 49 Instrument 3 48.01 48.03 49.02 49.01 50.00 48.02 47.09 47.05 47.80 Instrument 4 17.01 17.02 17.09 17.03 17.01 17.03 15.09 19.02 17.00 1. Define the resolution of an instrument. 2. Define the sensitivity of an instrument, then explain how the sensitivity of an instrument can be calculated. 3. Define the accuracy of an instrument system and explain using your own words how the accuracies of different instruments are compared. 4. Define the precision of an instrument system and explain using your own words how the precisions for different instruments are compared.arrow_forwardCan someone please help me to answer all of the following questions thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY