The purpose of this lab is to test for enzyme activity by examining factors that may influence the enzymes.
Background: The reaction taking place is hydrogen peroxide (H2O2) being broken down into oxygen gas(O2), and water (H2O). The function of the enzyme catalase is to help with the speed of the chemical reaction being done. The enzyme mixes with oxygen to quicken the reaction. We added the chemical Hydrochloric Acid (HCI) to the enzyme mixture to see how it would affect the rate of the reaction. The two things affect enzyme function is temperature and pH. We decided to use Hydrochloric Acid, it has a low pH making it an acidic chemical. We wanted to see if a chemical with an acid pH would affect the speed of the enzyme function. If the rate of the breakdown of hydrogen peroxide is affected by pH, then the enzyme will speed up the reaction time. Turn on the hot plate to heat up the mixture of Catalase (Activated Yeast). Once it hits between 30-37ºC the yeast is ready to use.
As the yeast is warming up use the hole puncher and punch holes into the filter paper to create hole punches to test
Once the yeast has warmed up, fill the 10 ml graduated cylinder and pour it into one of the beakers. Fill the graduated cylinder again so there’s 20 ml of catalase in the beaker.
Grab the 50 ml graduated cylinder and fill it to the 50 mark line with the Diluted 3% hydrogen peroxide. Pour it into the other beaker.
Next use the tweezers and grab a one of the hole punches and hold it in
Prepare standard solution #1, Take 1 ml sub stock solution from the 100 ml beaker and then put into 25 ml volumetric flask with the help of 10ml graduate pipette.
NH3. Add 20 mL water to the beaker by filling and emptying the 10 mL cylinder into the beaker
Pour approximately 50 mL of room-temperature distilled water into the glass beaker by using the estimated volume on the beaker.
Lactose is a sugar that can be put into smaller molecules, glucose and galactose. Lactose is when you are not able to digest milk and dairy meaning that the enzyme lactase that breaks down lactose is not functioning properly. ONPG was used as a substitute for lactase because even though it is colorless it helps show enzyme activity by turning yellow. This experiment measured the absorbance ONPG when exposed to lactase within an environment of different salinity’s. The enzyme, lactase, was obtained by crushing a lactaid pill and then was added into four cuvettes. ONPG and salt solution of different concentrations were added and their levels of absorption was measured by a spectrophotometer. The results showed that higher salt concentrations have a lower level of absorption. There were 4 cuvettes and within those cuvettes that solutions within them were being tested and the results showed the more salt solution added with the lactase the lower the absorbance. The less salt solution there was a higher rate of absorbance. The data supported the hypothesis that with increasing NaCl concentration there would be a decrease in enzyme activity.
Hydrate the yeast packets in a beaker with 400 mL of distilled water at a 10% concentration. In a 50 mL
Lab six requires students to observe the effects of pH and enzyme concentration on catecholase activity. Enzymes are organic catalysts that can affect the rate of a chemical reaction depending on the pH level and the concentration of the enzyme. As pH comes closer to a neutral pH the enzyme is at its greatest effectiveness. Also at the absorbance of a slope of 0.0122 the enzyme is affected greatly. The pH effect on enzymes can be tested by trying each pH level with a pH buffer of the same pH as labeled as the test tube and 1mL of potato juice, water, and catechol. This is all mixed together and put in the spectrophotometer to test how much is being absorbed at 420nm. As the effect on enzyme concentration can be tested almost the same way. This part of the exercise uses different amounts of pH 7-phosphate buffer and potato juice, and 1mL of catechol mixed together in a test tube. Each substance is put in the spectrophotometer at a wavelength set tot 420nm. The results are put down for every minute up to six minutes to see how enzyme concentration affects reaction rate. The results show that the pH 8 (0.494) affects the enzyme more than a pH of 4 (0.249), 6 (0.371), 7 (0.456), and 10 (0.126). Also the absorbance is greatest at a slope of 0.0122 with test tube C that has more effect on the reaction rate, than test tube A, B, and D.
1. Fill up a 200ml beaker with tap water and then pour it into the designated jar
XII. Take the 250 ml beaker to your lab bench. Set up a gravity filtration with a plastic funnel, folded wet filter paper, and an Erlenmeyer flask. Pour the content in the 250 ml beaker slowly through the filter paper. Wash the filter paper with deionized water. Dispose of the filtrate in the proper labeled waste container.
We did this to test which test tube would contain the highest concentration of glucose. What we wanted to know was if the lactase would affect the function of the enzyme. Our hypothesis is the lactase functions within a narrow pH and that will change in pH would affect the function of the enzyme. We predict that if we change the environmental factors it will have an effect the function of the enzyme if the pH is outside the range in its optimum activity. Our hypothesis was then proven because the reaction only occurred in a neutral and acidic state of pH, not basic. Which means the enzymes prime ability to function is a neutral, and acidic pH range.
3. Use a sterile pipette to transfer 0.1 ml of each dilution on to a MacConkey agar plate.
In the experiment we used Turnip, Hydrogen Peroxide, Distilled Water, and Guaiacol as my substances. On the first activity, Effect of Enzyme concentration of Reaction Rate for low enzyme concentration, we tested three concentrations of the turnip extract, and hydrogen peroxide. For the Turnip Extract I used 0.5 ml, 1.0 ml, and 2.0 ml. For hydrogen peroxide we used 0.1 ml, 0.2 ml, and 0.4 ml. We used a control to see the standard, and used a control for each enzyme concentration used. The control contains turnip extract and the color reagent, Guaiacol. We prepared my substrate tubes separately from the enzyme tubes. My substrate tube
8) One package of active dry yeast was added to the bottle labeled ‘10 mL sugar’ and solution was swirled by rod gently.
Students will be observing normal catalase reaction, the effect of temperature on enzyme activity, and the effect of pH on enzyme activity in this experiment. The enzymes will all around perform better when exposed in room temperature than when it is exposed to hot and cold temperatures. This is based on the fact that the higher the temperature, the better the enzymes will perform, but as the temperature reaches a certain high degree, the enzymes will start to denature, or lose their function.
The purpose of this experiment was to record catalase enzyme activity with different temperatures and substrate concentrations. It was hypothesized that, until all active sites were bound, as the substrate concentration increased, the reaction rate would increase. The first experiment consisted of five different substrate concentrations, 0.8%, 0.4%, 0.2%, 0.1%, and 0% H2O2. The second experiment was completed using 0.8% substrate concentration and four different temperatures of enzymes ranging from cold to boiled. It was hypothesized that as the temperature increased, the reaction rate would increase. This would occur until the enzyme was denatured. The results from the two experiments show that the more substrate concentration,
Organisms cannot depend solely on spontaneous reactions for the production of materials because they occur slowly and are not responsive to the organism's needs (Martineau, Dean, et al, Laboratory Manual, 43). In order to speed up the reaction process, cells use enzymes as biological catalysts. Enzymes are able to speed up the reaction through lowering activation energy. Additionally, enzymes facilitate reactions without being consumed (manual,43). Each enzyme acts on a specific molecule or set of molecules referred to as the enzyme's substrate and the results of this reaction are called products (manual 43). As a result, enzymes promote a reaction so that substrates are converted into products on a faster pace (manual 43). Most enzymes are proteins whose structure is determined by its sequence of its amino acids. Enzymes are designed to function the best under physiological conditions of PH and temperature. Any change of these variables that change the conformation of the enzyme will destroy or enhance enzyme activity(manual, 43).