
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%

Transcribed Image Text:EXERCISES
Section 2.1
2.1. Minimum work of separation.
A refinery stream is separated at 1,500 kPa into two products
under the conditions shown below. Using the data given, compute
e minimum work of separation, Wmins in kJ/h for To 298.15 K.
kmol/h
Component Feed Product 1
Ethane
Propane
n-butane
n-pentane
n-hexane
30
200
370
350
50
30
192
4
0
Product 1
Vapor
25,040
Feed
Product 2
Phase condition
Temperature, K
Enthalpy, kJ/kmol
Entropy, kJ/kmol-K
Liquid
364
19,480
Liquid
394
25,640
36.64
33.13
54.84
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 6 steps with 5 images

Knowledge Booster
Similar questions
- 2 A triple-acting evaporator with direct current power must concentrate 15000 kg/h of an aqueous solution entering 25 C from 10% to 40% by weight. For the heating is available live steam at 2.2 at, and on the third effect a vacuum is maintained that allows the solution to boil at 30ºC. The dissolution does not present an appreciable increase in the point of boiling and its specific heat is equal to the unit for all concentrations. The integral heat transmission coefficients for effects I, II, III, in Kcal/m2*h*ºC, they are worth 2800, 2500 and 1600. Apply to each effect: a) Hourly consumption of heating steam b) Boiling temperature c) The heating surface.arrow_forwardTomato pulp (40% solids content) is heated by flowing it into a steam injection heater at a rate of 500 kg / hour. 85% quality steam under 180 kPa is supplied to the heater at a rate of 40 kg / hour. If it is assumed that the heat exchanger efficiency is 85% and the initial slurry specific heat is 3.2 kJ / (kg K), the slurry specific heat during the heating process corresponds to the function Cp = Cpw (water fraction) + Cps (solids fraction). a. Determine the temperature of the product leaving the heater when the initial temperature is 35 ° C. =....° C. b. Determine the total solids fraction of the product after heating. = ...%arrow_forward
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The

Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY

Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The