Applied Statics and Strength of Materials (6th Edition)
Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840728
Author: Limbrunner
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 10, Problem 10.20SP

During a tensile test of a steel specimen, the strain at a stress of 35 MPa was calculated to be 0.000 170 (point A). The strain at a stress of 134 MPa was calculated to be 0.000 630 (point B). Determine the modulus of elasticity for this material using the slope between these two points. Calculate the expected stress that would correspond to a strain of 0.000 250. The proportional limit is 200 MPa.

Blurred answer
Students have asked these similar questions
A rosette consisting of 3 gages forming, respectively, angles of θa, θb and θc with the x-axis is attached to the free surface of machine components made of material with a given Poisson’s ratio v and Modulus of elasticity E as shown in Fig. 6. Take note that strain values given above are the gage readings and not principal strains. PLEASE ANSWER I,G,H
A tension test was performed on a steel specimen having an original diameter of 12.5 mm and gauge length of 50 mm. The data is listed in the table. Plot the stress–strain diagram and determine approximately the modulus of elasticity, the yield stress, the ultimate stress, and the rupture stress. Use a scale of 25 mm = 140 MPa and 25 mm = 0.05 mm/mm. Redraw the elastic region, using the same stress scale but a strain scale of 25 mm = 0.001 mm/mm.
A tension test was performed on a specimen having an original diameter of 12.5 mm and a gage length of 50mm. The data are listed in the table below: Complete the following: Plot the stress-strain curve. Label the y-axis every 50 MPa, and the x-axis every 0.05 mm/mm. Plot the linear portion of the stress-strain curve (first 5 points). Label the y-axis every 50 MPa, and the x-axis every 0.001 mm/mm. Determine the approximate Modulus of Elasticity Determine the approximate Ultimate Stress Determine the approximate Fracture Stress Determine the approximate Modulus of Resilience Determine the approximate Modulus of Toughness Other Requirements: Provide an example hand-written calculation showing how you calculated one point on the curve. Remember to properly label your plots and provide axis labels with units. Hand sketched plots will not be accepted. Use Excel or similar software.

Chapter 10 Solutions

Applied Statics and Strength of Materials (6th Edition)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY