CE 99 STATICS-W/ACCESS (LL) >IP<
CE 99 STATICS-W/ACCESS (LL) >IP<
12th Edition
ISBN: 9781260514100
Author: BEER
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.1, Problem 10.22P

A couple M with a magnitude of 100 N·m is applied as shown to the crank of the engine system. Knowing that AB = 50 mm and BC = 200 mm, determine the force P required to maintain the equilibrium of the system when (a) θ = 60°, (b) θ = 120°.

Chapter 10.1, Problem 10.22P, A couple M with a magnitude of 100 Nm isapplied as shown to the crank of the engine system.Knowing

Fig. P10.22

(a)

Expert Solution
Check Mark
To determine

Find the magnitude of the force P required to maintain the equilibrium.

Answer to Problem 10.22P

The magnitude of the force P required is 2.05kN()_.

Explanation of Solution

Given information:

The magnitude of the couple M is 100Nm.

The distance between the point A and B is 50 mm.

The distance between the point B and C is 200 mm.

The value of the angle θ=60°.

Calculation:

Show the free-body diagram of the engine system as in Figure 1.

CE 99 STATICS-W/ACCESS (LL) >IP<, Chapter 10.1, Problem 10.22P

Consider the geometry of the Figure 1.

Use the Law of sines;

ABsinϕ=BCsinθsinϕ=ABBCsinθ (1)

Differentiate the equation;

cosϕδϕ=ABBCcosθδθδϕ=ABBCcosθcosϕδθ

Find the horizontal displacement (xC) at point C using the relation.

xC=ABcosθ+BCcosϕ

Differentiate the equation;

δxC=ABsinθδθBCsinϕδϕ

Substitute ABBCsinθ for sinϕ and ABBCcosθcosϕδθ for δϕ.

δxC=ABsinθδθBC(ABBCsinθ)(ABBCcosθcosϕδθ)=ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)

Use the principle of virtual work;

δU=0PδxCMδθ=0

Substitute [ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)] for δxC.

P[ABsinθδθ(ABsinθ)(ABBCcosθcosϕδθ)]Mδθ=0P[ABsinθ+(ABsinθ)(ABBCcosθcosϕ)]M=0 (2)

Substitute 50 mm for AB, 200 mm for BC, and 60° for θ in Equation (1).

sinϕ=50200×sin60°ϕ=12.504°

Substitute 100Nm for M, 50 mm for AB, 200 mm for BC, 12.504° for ϕ, and 60° for θ in Equation (2).

P[50sin60°+(50sin60°)(50200cos60°cos12.504°)]100Nm×1,000mm1m=0P[43.30127+5.54416]100,000=0P=2.05×103N×1kN1,000NP=2.05kN()

Therefore, the magnitude of the force P required is 2.05kN()_.

(b)

Expert Solution
Check Mark
To determine

Find the magnitude of the force P required to maintain the equilibrium.

Answer to Problem 10.22P

The magnitude of the force P required is 2.65kN()_.

Explanation of Solution

Given information:

The magnitude of the couple M is 100Nm.

The distance between the point A and B is 50 mm.

The distance between the point B and C is 200 mm.

The value of the angle θ=120°.

Calculation:

Refer part (a) for calculation;

Substitute 50 mm for AB, 200 mm for BC, and 120° for θ in Equation (1).

sinϕ=50200×sin120°ϕ=12.504°

Substitute 100Nm for M, 50 mm for AB, 200 mm for BC, 12.504° for ϕ, and 120° for θ in Equation (2).

P[50sin120°+(50sin120°)(50200cos120°cos12.504°)]100Nm×1,000mm1m=0P[43.301275.54416]100,000=0P=2.65×103N×1kN1,000NP=2.65kN()

Therefore, the magnitude of the force P required is 2.65kN()_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem # 8: The five forces acting at the end of the boom satisfy the condition of equilibrium. Determine the values of T_{1} and T_{2} .
Solve Prob. 10.108 assuming that the 24-lb load is applied at C instead of E.(Reference to Problem 10.108):Two identical rods ABC and DBE are connected by a pin at B and by a spring CE . Knowing that the spring is 4 in. long when unstretched and that the constant of the spring is 8 lb/in., determine the distance x corresponding to equilibrium when a 24-lb load is applied at E as shown.
Two rods of negligible weight are attached to drums of radius r that are connected by a belt and spring of constant k . Knowing that the spring is undeformed when the rods are vertical, determine the range of values of P for which the equilibrium position 01=02 =0 = 0 is stable.

Chapter 10 Solutions

CE 99 STATICS-W/ACCESS (LL) >IP<

Ch. 10.1 - Prob. 10.11PCh. 10.1 - Knowing that the line of action of the force Q...Ch. 10.1 - Solve Prob. 10.12 assuming that the force P...Ch. 10.1 - The mechanism shown is acted upon by the force P....Ch. 10.1 - Prob. 10.15PCh. 10.1 - 10.15 and 10.16 Derive an expression for the...Ch. 10.1 - A uniform rod AB with length l and weight W is...Ch. 10.1 - The pin at C is attached to member BCD and can...Ch. 10.1 - For the linkage shown, determine the couple M...Ch. 10.1 - For the linkage shown, determine the force...Ch. 10.1 - A 4-kN force P is applied as shown to the piston...Ch. 10.1 - A couple M with a magnitude of 100 Nm isapplied as...Ch. 10.1 - Rod AB is attached to a block at A that can...Ch. 10.1 - Solve Prob. 10.23, assuming that the 800-N force...Ch. 10.1 - Prob. 10.25PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.27PCh. 10.1 - Determine the value of corresponding to...Ch. 10.1 - Prob. 10.29PCh. 10.1 - Two rods AC and CE are connected by a pin at Cand...Ch. 10.1 - Solve Prob. 10.30 assuming that force P is movedto...Ch. 10.1 - Two bars AD and DG are connected by a pin at Dand...Ch. 10.1 - Solve Prob. 10.32 assuming that the 900-N...Ch. 10.1 - Two 5-kg bars AB and BC are connected by a pin atB...Ch. 10.1 - A vertical force P with a magnitude of 150 N...Ch. 10.1 - Prob. 10.36PCh. 10.1 - 10.37 and 10.38 Knowing that the constant of...Ch. 10.1 - Prob. 10.38PCh. 10.1 - The lever AB is attached to the horizontal shaft...Ch. 10.1 - Solve Prob. 10.39, assuming that P = 350 N, l =250...Ch. 10.1 - Prob. 10.41PCh. 10.1 - The position of boom ABC is controlled by...Ch. 10.1 - The position of member ABC is controlled by the...Ch. 10.1 - The position of member ABC is controlled by...Ch. 10.1 - The telescoping arm ABC is used to provide...Ch. 10.1 - Solve Prob. 10.45, assuming that the workers...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - A block with weight W is pulled up a plane forming...Ch. 10.1 - Derive an expression for the mechanical...Ch. 10.1 - Denoting the coefficient of static friction...Ch. 10.1 - Knowing that the coefficient of static...Ch. 10.1 - Using the method of virtual work,...Ch. 10.1 - Using the method of virtual work, determine...Ch. 10.1 - Referring to Prob. 10.43 and using the value...Ch. 10.1 - Prob. 10.56PCh. 10.1 - Prob. 10.57PCh. 10.1 - Prob. 10.58PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.29....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.30....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.31....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.32....Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.34....Ch. 10.2 - Prob. 10.64PCh. 10.2 - Using the method of Sec. 10.2C, solve Prob. 10.37....Ch. 10.2 - Prob. 10.66PCh. 10.2 - Prob. 10.67PCh. 10.2 - Show that equilibrium is neutral in Prob. 10.7....Ch. 10.2 - Two uniform rods, each with a mass m, areattached...Ch. 10.2 - Two uniform rods, AB and CD, are attached to gears...Ch. 10.2 - Two uniform rods AB and CD, of the same length...Ch. 10.2 - Two uniform rods, each of mass m and length l, are...Ch. 10.2 - Using the method of Sec. 10.2C, solve Prob....Ch. 10.2 - In Prob. 10.40, determine whether each of...Ch. 10.2 - A load W of magnitude 144 lb is applied to...Ch. 10.2 - Prob. 10.76PCh. 10.2 - Prob. 10.77PCh. 10.2 - Prob. 10.78PCh. 10.2 - A slender rod AB with a weight W is attached to...Ch. 10.2 - A slender rod AB with a weight W is attached totwo...Ch. 10.2 - Prob. 10.81PCh. 10.2 - A spring AB of constant k is attached to two...Ch. 10.2 - A slender rod AB is attached to two collars A and...Ch. 10.2 - Prob. 10.84PCh. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.85 and 10.86 Cart B, which weighs 75 kN, rolls...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - 10.87 and 10.88 Collar A can slide freely on the...Ch. 10.2 - Prob. 10.89PCh. 10.2 - A vertical bar AD is attached to two springs...Ch. 10.2 - Rod AB is attached to a hinge at A and to two...Ch. 10.2 - Rod AB is attached to a hinge at A and to...Ch. 10.2 - Two bars are attached to a single spring of...Ch. 10.2 - Prob. 10.94PCh. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - The horizontal bar BEH is connected to three...Ch. 10.2 - Bars AB and BC, each with a length l and of...Ch. 10.2 - Prob. 10.98PCh. 10.2 - Prob. 10.99PCh. 10.2 - Prob. 10.100PCh. 10 - Determine the vertical force P that must be...Ch. 10 - Determine the couple M that must be applied...Ch. 10 - Determine the force P required to maintain...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - Derive an expression for the magnitude of the...Ch. 10 - A vertical load W is applied to the linkage at B....Ch. 10 - A force P with a magnitude of 240 N is applied to...Ch. 10 - Two identical rods ABC and DBE are connected bya...Ch. 10 - Solve Prob. 10.108 assuming that the 24-lb load...Ch. 10 - Two uniform rods each with a mass m and length...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...Ch. 10 - A homogeneous hemisphere with a radius r isplaced...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License