# Consider the following reaction: CH 3 X + Y → CH 3 Y + X At 25°C, the following two experiments were run, yielding the following data: Experiment 1: [Y] 0 = 3.0 M [CH 3 X] (mol/L) Time(h) 7.08 × 10 −3 1.0 4.52 × 10 −3 1.5 2.23 × 10 −3 2.3 4.76 × 10 −4 4.0 8.44 × l0 −5 5.7 2.75 × l0 −5 7.0 Experiment 2: [Y] 0 = 4.5 M [CH 3 X] (mol/L) Time(h) 4.50 × 10 −3 0 1.70 × 10 −3 1.0 4.19 × 10 −4 2.5 1.11 × 10 −4 4.0 2.81 × l0 −5 5.5 Experiments also were run at 85°C. The value of the rate constant at 85°C was found to be 7.88 × 10 8 (with the time in units of hours), where [CH 3 X] 0 = 1.0 × 10 −2 M and [Y] 0 = 3.0 M. a. Determine the rate law and the value of k for this reaction at 25°C. b. Determine the half-life at 85°C. c. Determine E a for the reaction. d. Given that the C8X bond energy is known to be about 325 kJ/mol, suggest a mechanism that explains the results in parts a and c. BuyFind

### Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243 BuyFind

### Chemistry: An Atoms First Approach

2nd Edition
Steven S. Zumdahl + 1 other
Publisher: Cengage Learning
ISBN: 9781305079243

#### Solutions

Chapter 11, Problem 116MP
Textbook Problem

## Expert Solution

### Want to see the full answer?

Check out a sample textbook solution.

### Want to see this answer and more?

Experts are waiting 24/7 to provide step-by-step solutions in as fast as 30 minutes!*

*Response times may vary by subject and question complexity. Median response time is 34 minutes for paid subscribers and may be longer for promotional offers. © 2021 bartleby. All Rights Reserved.