   Chapter 11, Problem 1RE ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

#### Solutions

Chapter
Section ### Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

# In Problems 1-12, find the derivative of each function. y = 10 e 3 x 2 − x

To determine

To calculate: The derivative of the provided function y=10e3x2x.

Solution:

The required derivative is 10e3x2x(6x1)_.

Explanation

Given Information:

The provided function is:

y=10e3x2x

Formula used:

The derivatives of exponential function:

ddxef(x)=ef(x)ddxf(x)

Where f(x) is a differentiable function of x.

Calculation:

Consider the provided function:

y=10e3x2x

Differentiate both sides with respect to x as:

dydx=ddx(10e3x2x)

Now, use the exponential rule of derivatives:

dydx=ddx(10e3x2x)=10e3x2xd(3x2x)dx=10e3x2x{d(3x2)dxd(x)dx}=10e(3x2x)(6x1)

Thus, the required derivative is 10e3x2x(6x1).

#### The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

#### Find the derivative of the function. F(x)=x2xarctantdt

Single Variable Calculus: Early Transcendentals, Volume I

#### (939592)1/2

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

#### Convert the expressions in Exercises 8596 radical form. 94(1x)7/3

Finite Mathematics and Applied Calculus (MindTap Course List)

#### Fill in the blanks. A linear function of the form f(x)=_.

Finite Mathematics for the Managerial, Life, and Social Sciences

#### For

Study Guide for Stewart's Multivariable Calculus, 8th 