BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

If  x 2 3 y 4 = 2 x 5 + 7 y 3 5 ,  find  d y / d x .

To determine

To calculate: The value of dydx for the provided equation x23y4=2x5+7y35.

Explanation

Given Information:

The provided equation is, x23y4=2x5+7y35.

Formula used:

When y is an implied function of x, obtain dydx by differentiating both sides of the equation with respect to x and then algebraically solve for dydx.

According to the chain rule, if f and g are differentiable functions with y=f(u) and u=g(x), then y is a differentiable function of x,

dydx=dydududx

Calculation:

Consider the provided equation,

x23y4=2x5+7y35

First, take the derivative of both sides of the equation with respect to x as,

ddx(x23y4)=ddx(2x5+7y35)

Now, use the chain rule of derivatives,

dydx=dydududx

To obtain the derivatives of x2, y4, x5andy3 as,

ddx(x23y4)=ddx(

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 11 Solutions

Show all chapter solutions add
Sect-11.1 P-7ESect-11.1 P-8ESect-11.1 P-9ESect-11.1 P-10ESect-11.1 P-11ESect-11.1 P-12ESect-11.1 P-13ESect-11.1 P-14ESect-11.1 P-15ESect-11.1 P-16ESect-11.1 P-17ESect-11.1 P-18ESect-11.1 P-19ESect-11.1 P-20ESect-11.1 P-21ESect-11.1 P-22ESect-11.1 P-23ESect-11.1 P-24ESect-11.1 P-25ESect-11.1 P-26ESect-11.1 P-27ESect-11.1 P-28ESect-11.1 P-29ESect-11.1 P-30ESect-11.1 P-31ESect-11.1 P-32ESect-11.1 P-33ESect-11.1 P-34ESect-11.1 P-35ESect-11.1 P-36ESect-11.1 P-37ESect-11.1 P-38ESect-11.1 P-39ESect-11.1 P-40ESect-11.1 P-41ESect-11.1 P-42ESect-11.1 P-43ESect-11.1 P-44ESect-11.1 P-45ESect-11.1 P-46ESect-11.1 P-47ESect-11.1 P-48ESect-11.1 P-49ESect-11.1 P-50ESect-11.1 P-51ESect-11.1 P-52ESect-11.2 P-1CPSect-11.2 P-2CPSect-11.2 P-3CPSect-11.2 P-4CPSect-11.2 P-1ESect-11.2 P-2ESect-11.2 P-3ESect-11.2 P-4ESect-11.2 P-5ESect-11.2 P-6ESect-11.2 P-7ESect-11.2 P-8ESect-11.2 P-9ESect-11.2 P-10ESect-11.2 P-11ESect-11.2 P-12ESect-11.2 P-13ESect-11.2 P-14ESect-11.2 P-15ESect-11.2 P-16ESect-11.2 P-17ESect-11.2 P-18ESect-11.2 P-19ESect-11.2 P-20ESect-11.2 P-21ESect-11.2 P-22ESect-11.2 P-23ESect-11.2 P-24ESect-11.2 P-25ESect-11.2 P-26ESect-11.2 P-27ESect-11.2 P-28ESect-11.2 P-29ESect-11.2 P-30ESect-11.2 P-31ESect-11.2 P-32ESect-11.2 P-33ESect-11.2 P-34ESect-11.2 P-35ESect-11.2 P-36ESect-11.2 P-37ESect-11.2 P-38ESect-11.2 P-39ESect-11.2 P-40ESect-11.2 P-41ESect-11.2 P-42ESect-11.2 P-43ESect-11.2 P-44ESect-11.2 P-45ESect-11.2 P-46ESect-11.2 P-47ESect-11.2 P-48ESect-11.2 P-49ESect-11.2 P-50ESect-11.2 P-51ESect-11.2 P-52ESect-11.2 P-55ESect-11.2 P-56ESect-11.2 P-58ESect-11.2 P-59ESect-11.2 P-60ESect-11.2 P-61ESect-11.2 P-62ESect-11.2 P-66ESect-11.3 P-1CPSect-11.3 P-2CPSect-11.3 P-1ESect-11.3 P-2ESect-11.3 P-3ESect-11.3 P-4ESect-11.3 P-5ESect-11.3 P-6ESect-11.3 P-7ESect-11.3 P-8ESect-11.3 P-9ESect-11.3 P-10ESect-11.3 P-11ESect-11.3 P-12ESect-11.3 P-13ESect-11.3 P-14ESect-11.3 P-15ESect-11.3 P-16ESect-11.3 P-17ESect-11.3 P-18ESect-11.3 P-19ESect-11.3 P-20ESect-11.3 P-21ESect-11.3 P-22ESect-11.3 P-23ESect-11.3 P-24ESect-11.3 P-25ESect-11.3 P-26ESect-11.3 P-27ESect-11.3 P-28ESect-11.3 P-29ESect-11.3 P-30ESect-11.3 P-31ESect-11.3 P-32ESect-11.3 P-33ESect-11.3 P-34ESect-11.3 P-35ESect-11.3 P-36ESect-11.3 P-37ESect-11.3 P-38ESect-11.3 P-39ESect-11.3 P-40ESect-11.3 P-41ESect-11.3 P-42ESect-11.3 P-43ESect-11.3 P-44ESect-11.3 P-45ESect-11.3 P-46ESect-11.3 P-47ESect-11.3 P-48ESect-11.3 P-49ESect-11.3 P-50ESect-11.3 P-51ESect-11.3 P-52ESect-11.3 P-53ESect-11.3 P-54ESect-11.3 P-55ESect-11.3 P-56ESect-11.3 P-57ESect-11.3 P-58ESect-11.3 P-59ESect-11.3 P-60ESect-11.3 P-61ESect-11.3 P-62ESect-11.3 P-63ESect-11.4 P-1CPSect-11.4 P-2CPSect-11.4 P-3CPSect-11.4 P-1ESect-11.4 P-2ESect-11.4 P-3ESect-11.4 P-4ESect-11.4 P-5ESect-11.4 P-6ESect-11.4 P-7ESect-11.4 P-8ESect-11.4 P-9ESect-11.4 P-10ESect-11.4 P-11ESect-11.4 P-12ESect-11.4 P-13ESect-11.4 P-14ESect-11.4 P-15ESect-11.4 P-16ESect-11.4 P-17ESect-11.4 P-18ESect-11.4 P-19ESect-11.4 P-20ESect-11.4 P-21ESect-11.4 P-22ESect-11.4 P-23ESect-11.4 P-24ESect-11.4 P-25ESect-11.4 P-26ESect-11.4 P-27ESect-11.4 P-28ESect-11.4 P-29ESect-11.4 P-30ESect-11.4 P-31ESect-11.4 P-32ESect-11.4 P-33ESect-11.4 P-34ESect-11.4 P-35ESect-11.4 P-36ESect-11.4 P-37ESect-11.4 P-38ESect-11.4 P-39ESect-11.5 P-1CPSect-11.5 P-2CPSect-11.5 P-3CPSect-11.5 P-4CPSect-11.5 P-1ESect-11.5 P-2ESect-11.5 P-3ESect-11.5 P-4ESect-11.5 P-5ESect-11.5 P-6ESect-11.5 P-7ESect-11.5 P-8ESect-11.5 P-9ESect-11.5 P-10ESect-11.5 P-11ESect-11.5 P-12ESect-11.5 P-15ESect-11.5 P-16ESect-11.5 P-17ESect-11.5 P-18ESect-11.5 P-19ESect-11.5 P-20ESect-11.5 P-21ESect-11.5 P-22ESect-11.5 P-23ESect-11.5 P-24ECh-11 P-1RECh-11 P-2RECh-11 P-3RECh-11 P-4RECh-11 P-5RECh-11 P-6RECh-11 P-7RECh-11 P-8RECh-11 P-9RECh-11 P-10RECh-11 P-11RECh-11 P-12RECh-11 P-13RECh-11 P-14RECh-11 P-15RECh-11 P-16RECh-11 P-17RECh-11 P-18RECh-11 P-19RECh-11 P-20RECh-11 P-21RECh-11 P-22RECh-11 P-23RECh-11 P-24RECh-11 P-25RECh-11 P-26RECh-11 P-27RECh-11 P-28RECh-11 P-29RECh-11 P-30RECh-11 P-31RECh-11 P-32RECh-11 P-33RECh-11 P-34RECh-11 P-38RECh-11 P-39RECh-11 P-40RECh-11 P-41RECh-11 P-35RECh-11 P-36RECh-11 P-37RECh-11 P-1TCh-11 P-2TCh-11 P-3TCh-11 P-4TCh-11 P-5TCh-11 P-6TCh-11 P-7TCh-11 P-8TCh-11 P-9TCh-11 P-10TCh-11 P-11TCh-11 P-12TCh-11 P-13TCh-11 P-14TCh-11 P-15TCh-11 P-16TCh-11 P-17TCh-11 P-19T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Prove Equation 4.

Calculus: Early Transcendentals

In Exercises 1-8, use the graph of the given function f to determine limxaf(x) at the indicated value of a, if ...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Convert the expressions in Exercises 8596 radical form. x1/3y3/2

Finite Mathematics and Applied Calculus (MindTap Course List)

The slope of the tangent line to r = cos θ at is:

Study Guide for Stewart's Multivariable Calculus, 8th

limx6(x210x)=. a) 24 b) 6 c) 26 d) does not exist

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Simplify. 10c3(8c2d+12)

Mathematics For Machine Technology