Physics For Scientists And Engineers
6th Edition
ISBN: 9781429201247
Author: Paul A. Tipler, Gene Mosca
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 63P
(a)
To determine
The direction of gravitational field
(b)
To determine
The magnitude of the field at the origin.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Pole to Pole, an early science fiction story by George Griffith, three explorers attempt to travel by capsule through a naturally formed
(and, of course, fictional) tunnel directly from the south pole to the north pole. According to the story, as the capsule approaches
Earth's center, the gravitational force on the explorers becomes alarmingly large and then, exactly at the center, it suddenly but only
momentarily disappears. Then the capsule travels through the second half of the tunnel, to the north pole. With what speed would mail
pass through the center of Earth if falling in this tunnel? Ignore air resistance.
Mins
Number
i
Units
Chapter 13, Problem 088
In Pole to Pole, an early science fiction story by George Griffith, three explorers attempt to travel by capsule through a naturally formed (and, of course, fictional) tunnel
directly from the south pole to the north pole. According to the story, as the capsule approaches Earth's center, the gravitational force on the explorers becomes
alarmingly large and then, exactly at the center, it suddenly but only momentarily disappears. Then the capsule travels through the second half of the tunnel, to the north
pole. With what speed would mail pass through the center of Earth if falling in this tunnel? Ignore air resistance.
Mans
Number
Units
the tolerance is +/-2%
Click if you would like to Show Work for this question: Open Show Work
The diagram below shows three masses at the corners of a square of sides d = 1.10 m. Here, m, = m, = m and m, = 3.10m where m = 9.00 kg.
m,
m3
m1
(a) What is the magnitude of the gravitational field at the center of the square due to these three masses?
1.39e-9
What is the field at the center due to the two equal masses? Did you consider the symmetry of the situation? m/s2
(b) Suppose the two masses m, and m, are not equal. What value of m, will produce a gravitational field at the center of the square directed vertically down?
kg
Chapter 11 Solutions
Physics For Scientists And Engineers
Ch. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - Prob. 5PCh. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10P
Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - Prob. 102PCh. 11 - Prob. 103PCh. 11 - Prob. 104PCh. 11 - Prob. 105PCh. 11 - Prob. 106PCh. 11 - Prob. 107P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardLet gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardA satellite of mass 16.7 kg in geosynchronous orbit at an altitude of 3.58 104 km above the Earths surface remains above the same spot on the Earth. Assume its orbit is circular. Find the magnitude of the gravitational force exerted by the Earth on the satellite. Hint: The answer is not 163 N.arrow_forward
- Consider the Earth and the Moon as a two-particle system, a. How far from the center of the Earth is the gravitational field of this two-particle system zero? b. Sketch gravitational field vectors g along the line joining the Earth and the Moon. Indicate the point at which g=0 (Do not consider positions inside either object.)arrow_forwardScientists design a new particle accelerator in which protons with mass m= 1.7x 10^−27 (kg) follow a circular trajectory given by r =ccos(kt^2)i+ csin(kt^2)j where c= 5.0 (m) and k= 8.0 x10^4 (radius/s^2) are constants and t is the elapsed time. a) what is the radius of the circle? b) what is the proton’s speed at t = 3.0 s? c) what is the force on the proton at t = 3.0 s? Give your answer in component form.arrow_forwardAn endless thin wire of density Y1 (unit: kg/m) is just above the x axis. An infinitely thin layer of density Y2 (unit: kg/m²) is parallel to the x-y plane and intersects the z-axis at the point z= -a. Find the gravitational field at (x,y,z) position. Give your answer in terms of (G,Y1,Y2, a, x, y, z, ^x, ^y, ^z(unit vectors)). Hint: A hint is given in the figure. The result will be (+ and -).arrow_forward
- In the figure, three 9.74 kg spheres are located at distances d₁ = 0.953 m, and d₂ = 0.215 m. What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the net gravitational force on sphere B due to spheres A and C? (a) Number i (b) Number i dr B Units Units î ✪arrow_forwardMembers of the Star Trek exploration committee find themselves on Physitopia, a planet with its own unique gravitational characteristics. The Force-sensitive individuals on the committee, accustomed to manipulating the Force on various planets, are now faced with a new challenge: understanding and adapting to the gravitational force on Physitopia. Physitopia has a mass of 6.46 × 1023 kg and a radius of 3.39 × 106 m, poses an intriguing gravitational scenario. To address the concerns of the Star Trek characters, we must calculate the acceleration due to gravity on Physitopia and determine the weight of a 65 kg individual.arrow_forwardIn introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres with masses of 1.90 kg and 19.0 g whose centers are separated by about 2.60 cm. Calculate the gravitational force between these spheres, treating each as a particle located at the center of the sphere.arrow_forward
- With density Y1(unit: kg/m), 3 endless wires are just above the x,y,z axes. Find the gravitational field at (x,y,z) position. NOTE: Give your answer in terms of (x,y,z, ^x, ^y, ^z(unit vectors), G, Y1) A hint is given in the figure.arrow_forwardIn introductory physics laboratories, a typical Cavendish balance for measuring the gravitational constant G uses lead spheres with masses of 1.20 kg and 12.0 g whose centers are separated by about 4.90 cm. Calculate the gravitational force between these spheres, treating each as a particle located at the center of the sphere. Need Help? Master It Read Itarrow_forwardA planet with mass of 7.50 x 1024) and Jupiter (m = 1.901 x 1027) are attracted to each other. However, they are in a long-distance relationship, being separated by a distance of 4.09 x 1014 meters. Calculate the force of attraction between these two planets. (Iwant to see the set-up of the equation. You can attach a picture and upload it)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY