Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
11th Edition
ISBN: 9781259679407
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell
Publisher: McGraw-Hill Education
bartleby

Concept explainers

Question
Book Icon
Chapter 11.4, Problem 11.93P
To determine

(a)

The position, velocity and acceleration at time is equal to 0s.

Expert Solution
Check Mark

Answer to Problem 11.93P

The position, velocity and acceleration at time t=0s are 20mm, 43.3mm/s, and 743mm/s2 respectively.

Explanation of Solution

Given:

Position of the particle is r=x1(1(1t+1))i+y1eπt2(cos2πt)j. Position x1=30mm and y1=20mm.

Concept used:

Relation between position and velocity is given as:

v=drdt ...... (1)

Here, time is t, position of the particle is x and velocity of the particle is v.

Relation between acceleration and velocity is given as:

a=dvdt ...... (2)

Here, acceleration of the particle is a, time is t and velocity of the particle is v.

Calculation:

Substitute 0s for t in the position equation.

r=x1(1(10+1))i+y1eπ×02(cos2π0)jr=0i+20j

The magnitude is calculated as follows:

r=02+202r=20mm

Substitute x1(1(1t+1))i+y1eπt2(cos2πt)j for r in equation (1).

v=d(x1(1(1t+1))i+y1eπt2(cos2πt)j)dtv=x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt)j

Substitute 0s for t in the above velocity equation.

v=30(001(0+1)2)i+20eπ×02(2πsin2π0π2cos2π0)jv=30i31.4159j|v|=302+(31.4159)2|v|=43.3mm/s

Substitute x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt)j for v in equation (2).

a=d(x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt))jdta=x1(02(t+1)(t+1)4)i+y1eπt2(π2(2πsin2πt+π2cos2πt)+(π2sin2πt(2π)2cos2πt))

Substitute 0s for t in the above acceleration equation.

a=30(02(0+1)(0+1)4)i+20eπ×02(π2(2πsin2π0+π2cos2π0)+(π2sin2π0(2π)2cos2π0))ja=60i+20((π2)2(2π)2)ja=60i740.22j|a|=(60)2+(740.22)2|a|743mm/s2

Thus, the position, velocity and acceleration at time t=0s are 20mm, 43.3mm/s and 743mm/s2 respectively.

Conclusion:

The position, velocity and acceleration at time t=0s are 20mm, 43.3mm/s and 743mm/s2 respectively.

To determine

(b)

The position, velocity and acceleration.

Expert Solution
Check Mark

Answer to Problem 11.93P

The position, velocity and acceleration at time t=0s are 18.1mm, 5.66mm/s and 70.3mm/s2 respectively.

Explanation of Solution

Given:

Position of the particle is r=x1(1(1t+1))i+y1eπt2(cos2πt)j. Position x1=30mm and y1=20mm, t = 1.5s.

Calculation:

Substitute 1.5s for t in the position equation.

r=x1(1(11.5+1))i+y1eπ×1.52(cos2π×1.5)jr=18i+1.9j

The magnitude is calculated as follows:

r=182+1.92r=18.1mm

Substitute x1(1(1t+1))i+y1eπt2(cos2πt)j for r in equation (1).

v=d(x1(1(1t+1))i+y1eπt2(cos2πt)j)dtv=x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt)j

Substitute 1.5s for t in the above velocity equation.

v=30(001(1.5+1)2)i+20eπ×1.52(2πsin2π×1.5π2cos2π×1.5)jv=4.8i3j|v|=4.82+(3)2|v|=5.66mm/s

Substitute x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt)j for v in equation (2).

a=d(x1(001(t+1)2)i+y1eπt2(2πsin2πtπ2cos2πt))jdta=x1(02(t+1)(t+1)4)i+y1eπt2(π2(2πsin2πt+π2cos2πt)+(π2sin2πt(2π)2cos2πt))

Substitute 1.5s for t in the above acceleration equation.

a=30(02(0+1)(0+1)4)i+20eπ×02(π2(2πsin2π0+π2cos2π0)+(π2sin2π0(2π)2cos2π0))ja=3.84i+70.2j|a|=(3.84)2+(70.2)2|a|70.3mm/s2

Thus, the position, velocity and acceleration at time t=0s are 18.1mm, 5.66mm/s and 70.3mm/s2 respectively.

Conclusion:

The position, velocity and acceleration at t=1.5s are 18.1mm, 5.66mm/s and 70.3mm/s2 respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine the natural frequency of a pendulum whose length is 5 m.
A device with a mass of 370 kg is placed on top of the suspension, whereby the springs are compressed into a pile a distance of 4 mm. What is the natural frequency of the system in Hertz to one decimal place?
A spring-mass system K1, m, has a natural frequency of f1. If a second spring K2 is added in parallel with the first spring, the natural frequency is lowered to 1/2f1. Determine K2 in terms of K1.

Chapter 11 Solutions

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card

Ch. 11.1 - The brakes of a car are applied, causing it to...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is directly...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A Scotch yoke is a mechanism that transforms the...Ch. 11.1 - For the Scotch yoke mechanism shown, the...Ch. 11.1 - A piece is by electronic equipment that is...Ch. 11.1 - A projectile enters a resisting medium at x=0 with...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A brass (nonmagnetic) block A and a steel magnet B...Ch. 11.1 - Based on experimental observations, the...Ch. 11.1 - A spring AB is attached to a support at A and to a...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - Starting from x=0 with no initial velocity, a...Ch. 11.1 - A ball is dropped from a boat so that it strikes...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - The acceleration of a particle is defined by the...Ch. 11.1 - A human-powered vehicle (HPV) team wants to model...Ch. 11.1 - Experimental data indicate that in a region...Ch. 11.1 - Based on observations, the speed of a jogger can...Ch. 11.1 - The acceleration due to gravity at an altitude y...Ch. 11.1 - The acceleration due to gravity of a particle...Ch. 11.1 - The velocity of a particle is v=v0[1sin(t/T)] ....Ch. 11.1 - An eccentric circular cam, which serves a similar...Ch. 11.2 - An airplane begins its take-off run at A with zero...Ch. 11.2 - A motorist is travelling at 54 km/h when she...Ch. 11.2 - Steep safety ramps are built beside mountain...Ch. 11.2 - A group of students launches a model rocket in the...Ch. 11.2 - A small package is released from rest at A and...Ch. 11.2 - A sprinter in a 100-m race accelerates uniformly...Ch. 11.2 - Automobile A starts from O and accelerates at the...Ch. 11.2 - In a boat race, boat A is leading boat B by 50 m...Ch. 11.2 - As relay runner A enters the 65-ft-long exchange...Ch. 11.2 - Automobiles A and B are traveling in adjacent...Ch. 11.2 - Two automobiles A and B are approaching each other...Ch. 11.2 - An elevator is moving upward at a constant speed...Ch. 11.2 - Two rockets are launched at a fireworks display....Ch. 11.2 - Car A is parked along the northbound lane of a...Ch. 11.2 - The elevator E shown in the figure moves downward...Ch. 11.2 - The elevator E shown starts from rest and moves...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - An athlete pulls handle A to the left with a...Ch. 11.2 - Slider block B moves to the right with a constant...Ch. 11.2 - At the instant shown, slider block B is moving...Ch. 11.2 - A farmer lifts his hay bales into the top loft of...Ch. 11.2 - The motor M reels in the cable at a constant rate...Ch. 11.2 - Collar A starts from rest at t=0 and moves upward...Ch. 11.2 - Block A starts from rest at t=0 and moves downward...Ch. 11.2 - Block B starts from rest, block A moves with a...Ch. 11.2 - Block B moves downward with a constant velocity of...Ch. 11.2 - The system shown starts from rest, and each...Ch. 11.2 - The system shown starts from rest, and the length...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with a...Ch. 11.3 - A particle moves in a straight line with the...Ch. 11.3 - Prob. 11.64PCh. 11.3 - Prob. 11.65PCh. 11.3 - A parachutist is in free fall at a rate of 200...Ch. 11.3 - A commuter train traveling at 40 mi/h is 3 mi from...Ch. 11.3 - Prob. 11.68PCh. 11.3 - In a water-tank test involving the launching of a...Ch. 11.3 - Prob. 11.70PCh. 11.3 - Prob. 11.71PCh. 11.3 - A car and a truck are both traveling at the...Ch. 11.3 - Solve Prob. 11.72, assuming that the driver of the...Ch. 11.3 - Car A is traveling on a highway at a constant...Ch. 11.3 - An elevator starts from rest and moves upward,...Ch. 11.3 - Car A is traveling at 40 mi/h when it enters a 30...Ch. 11.3 - An accelerometer record for the motion of a given...Ch. 11.3 - Prob. 11.78PCh. 11.3 - An airport shuttle train travels between two...Ch. 11.3 - Prob. 11.80PCh. 11.3 - Prob. 11.81PCh. 11.3 - The acceleration record shown was obtained during...Ch. 11.3 - A training airplane has a velocity of 126 ft/s...Ch. 11.3 - Shown in the figure is a portion of the...Ch. 11.3 - An elevator starts from rest and rises 40 m to its...Ch. 11.3 - Prob. 11.86PCh. 11.3 - Prob. 11.87PCh. 11.3 - Prob. 11.88PCh. 11.4 - Two model rockets are fired simultaneously from a...Ch. 11.4 - Ball A is thrown straight up. Which of the...Ch. 11.4 - Ball A is thrown straight up with an initial speed...Ch. 11.4 - Two cars are approaching an intersection at...Ch. 11.4 - Blocks A and B are released from rest in the...Ch. 11.4 - A ball is thrown so that the motion is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a vibrating particle is defined by...Ch. 11.4 - The motion of a particle is defined by the...Ch. 11.4 - Prob. 11.93PCh. 11.4 - A girl operates a radio-controlled model car in a...Ch. 11.4 - The three-dimensional motion of a particle is...Ch. 11.4 - Prob. 11.96PCh. 11.4 - An airplane used to drop water on brushfires is...Ch. 11.4 - A ski jumper starts with a horizontal take-off...Ch. 11.4 - A baseball pitching machine "throws" baseballs...Ch. 11.4 - While delivering newspapers, a girl throws a...Ch. 11.4 - What flows from a drain spout with an initial...Ch. 11.4 - In slow pitch softball, the underhand pitch must...Ch. 11.4 - A volleyball player serves the ball with an...Ch. 11.4 - A golfer hits a golf ball with an initial velocity...Ch. 11.4 - A homeowner uses a snowblower to clear his...Ch. 11.4 - At halftime of a football game, souvenir balls are...Ch. 11.4 - A basketball player shoots when she is 16 ft from...Ch. 11.4 - A tennis player serves the ball at a height h=2.5...Ch. 11.4 - The nozzle at A discharges cooling water with an...Ch. 11.4 - While holding one of its ends, a worker lobs a...Ch. 11.4 - The pitcher in a softball game throws a ball with...Ch. 11.4 - Prob. 11.112PCh. 11.4 - Prob. 11.113PCh. 11.4 - Prob. 11.114PCh. 11.4 - An oscillating garden sprinkler which discharges...Ch. 11.4 - A nozzle at A discharges water with an initial...Ch. 11.4 - The velocities of skiers A and B are as shown....Ch. 11.4 - The three blocks shown move with constant...Ch. 11.4 - Three seconds after automobile B passes through...Ch. 11.4 - Shore-based radar indicates that a ferry leaves...Ch. 11.4 - Airplanes A and B are flying at the same altitude...Ch. 11.4 - Prob. 11.122PCh. 11.4 - Knowing that at the instant shown block B has a...Ch. 11.4 - Knowing that at the instant shown block A has a...Ch. 11.4 - A boat is moving to the right with a constant...Ch. 11.4 - The assembly of rod A and wedge B starts from rest...Ch. 11.4 - Prob. 11.127PCh. 11.4 - Conveyor belt A, which forms a 20° angle with the...Ch. 11.4 - During a rainstorm, the paths of the raindrops...Ch. 11.4 - Instruments in airplane A indicate that; with...Ch. 11.4 - When a small boat travels north at 5 km/h, a flag...Ch. 11.4 - As part of a department store display, a model...Ch. 11.5 - The Ferris wheel is rotating with a constant...Ch. 11.5 - A race car travels around the track shown at a...Ch. 11.5 - A child walks across merry go-round A with a...Ch. 11.5 - Determine the smallest radius that should be used...Ch. 11.5 - Prob. 11.134PCh. 11.5 - Human centrifuges are often used to simulate...Ch. 11.5 - The diameter of the eye of a stationary hurricane...Ch. 11.5 - The peripheral speed of the tooth of a...Ch. 11.5 - A robot arm moves so that P travels in a circle...Ch. 11.5 - A monorail train starts from rest on a curve of...Ch. 11.5 - A motorist starts from rest at point A on a...Ch. 11.5 - Race car A is traveling on a straight portion of...Ch. 11.5 - At a given instant in an airplane race, airplane A...Ch. 11.5 - A race car enters the circular portion of a track...Ch. 11.5 - An airplane flying at a constant speed of 240 m/s...Ch. 11.5 - A golfer hits a golf ball from point A with an...Ch. 11.5 - Three children are throwing snowballs at each...Ch. 11.5 - Coal is discharged from the tailgate A of a dump...Ch. 11.5 - From measurements of a photograph, it has been...Ch. 11.5 - A child throws a ball from point A with an initial...Ch. 11.5 - Prob. 11.150PCh. 11.5 - Prob. 11.151PCh. 11.5 - Prob. 11.152PCh. 11.5 - Prob. 11.153PCh. 11.5 - Prob. 11.154PCh. 11.5 - Prob. 11.155PCh. 11.5 - Prob. 11.156PCh. 11.5 - Prob. 11.157PCh. 11.5 - A satellite will travel indefinitely in a circular...Ch. 11.5 - Prob. 11.159PCh. 11.5 - Satellites A and B are traveling in the same plane...Ch. 11.5 - Prob. 11.161PCh. 11.5 - The path of a particle P is a limacon. The motion...Ch. 11.5 - During a parasailing ride, the boat is traveling...Ch. 11.5 - Prob. 11.164PCh. 11.5 - As rod OA rotates, pin P moves along the parabola...Ch. 11.5 - The pin at B is free to slide along the circular...Ch. 11.5 - To study the performance of a racecar a high-speed...Ch. 11.5 - After taking off, a helicopter climbs in a...Ch. 11.5 - At the bottom of a loop in the vertical plane, an...Ch. 11.5 - Pin C is attached to rod BC and slides freely in...Ch. 11.5 - Prob. 11.171PCh. 11.5 - Prob. 11.172PCh. 11.5 - Prob. 11.173PCh. 11.5 - Prob. 11.174PCh. 11.5 - Prob. 11.175PCh. 11.5 - Prob. 11.176PCh. 11.5 - Prob. 11.177PCh. 11.5 - Prob. 11.178PCh. 11.5 - Prob. 11.179PCh. 11.5 - Prob. 11.180PCh. 11.5 - Prob. 11.181PCh. 11 - The motion of a particle is defined by the...Ch. 11 - A drag racing car starts from rest and moves the...Ch. 11 - A particle moves in straight line with the...Ch. 11 - Prob. 11.185RPCh. 11 - Prob. 11.186RPCh. 11 - Collar A starts form rest at t=0 and moves...Ch. 11 - Prob. 11.188RPCh. 11 - As the truck shown begins to back up with a...Ch. 11 - A velodrome is a specially designed track used in...Ch. 11 - Prob. 11.191RPCh. 11 - Prob. 11.192RPCh. 11 - A telemetry system is used to quantify kinematic...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY