Physics for Scientists and Engineers, Vol. 3
Physics for Scientists and Engineers, Vol. 3
6th Edition
ISBN: 9781429201346
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 12, Problem 17P
To determine

To Find:The tension in the backstay and the normal force that the deck exerts on the mast.

Expert Solution & Answer
Check Mark

Answer to Problem 17P

The tension in thee backstay is 692 N .

The normal force exerted by the deck on the mast is 2.54 kN .

Explanation of Solution

Given data:

Free body diagram for the given situation is as follows:

Physics for Scientists and Engineers, Vol. 3, Chapter 12, Problem 17P

Formula used:

Apply the condition of translational and rotational equilibrium.

  F=0τ=0

Calculation:

Apply the condition of rotational equilibrium to the mast. The net torque due to tension by the wires is equal to zero and is represented as:

  τ=0

Torque due to the left side of the pole is given as

  dBTFsinθ=0

Torque due to right side of the pole is given as

  dBTFsin45=0

Since the torque due to right side of the wire is in clock wise direction, it is negative.

Thus, the torque of horizontal components according to the condition of rotational equilibrium is given as

  dBTFsinθdBTBsin45=0

Here, TF is the tension in the forestay, TB is the tension in the backstay, and dB is the distance of the backstay.

Substitute 4.88 m for dB and 1000 N for TF in equation of net torque

  (4.88 m)(1000 N)sinθF(4.88 m)TBsin45=0TB=(1000 N)sinθFsin45

From the figure, angle of forestay is obtained as follows:

  θF=tan1(dFdB)

Here, dF is the distance of the forestay.

Substitute 2.74 m for dF and 4.88 m for dB

  θF=tan1(2.74 m4.88 m)=29.3

Determine the tension in the backstay as below.

Substitute the 29.3 for θF in equation TB=(1000 N)sinθFsin45

  TB=(1000 N)sin29.3sin45=692 N

Therefore, the tension in the backstay is 692 N .

Torque due to the left side of the pole is given as,

  TFcosθF=0

Torque due to right side of the pole is given as,

  TBcos45=0

Since the torque due to right side of the wire is in clock wise direction, it is negative.

Thus, the net torque of vertical components according to the condition of rotational equilibrium is given as,

  FDTFcosθFTBcos45mg=0

Here, TF is the tension in the forestay, TB is the tension in the backstay, dB is the distance of the backstay, FD is the normal force by the deck, m is the mass of the pole, and g is the acceleration due to gravity.

Re-arrange the above equation for FD .

  FD=TFcosθF+TBcos45+mg

Substitute 1000 N for FD , 29.3 for θF , 692 N for TF , 120 kg for m and 9.81 m/s2 for g in equation in above re-arranged equation.

  FD=(1000 N)(cos29.3)+(692 N)(cos45)+(120 kg)(9.81 m/s2)=2.54 kN

Conclusion:

The normal force exerted by the deck on the mast is 2.54 kN .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a vertical uniform beam of length Lthat is hinged at its lower end.A horizontal force F is applied to the beam at distance y from the lower end. The beam remainsvertical because of a cable attached at the upper end, at angle uwith the horizontal. gives the tension T in the cableas a function of the position of the applied force given as a fractiony/L of the beam length.The scale of the T axis is set by Ts= 600 N.Figure 12-49c gives the magnitude Fh of the horizontal force on thebeam from the hinge, also as a function of y/L. Evaluate (a) angle uand (b) the magnitude of .
a horizontal rod (m=5.2 kg) is hinged to a wall at the left end and three forces are acting on the rod as shown in the figure: the force of gravity (mg), a tension force (T), and the force exerted by the hinge (broken into components Fx  and Fy) If theta = 35 degrees, what must T be equal to in order to keep the rod static?
A horizontal plank 4.00 m long and having mass 20.0 kg rests on two pivots, one at the left end and a second 1.00 m from the right end. Find the magnitude of the force exerted on the plank by the second pivot.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    University Physics Volume 1
    Physics
    ISBN:9781938168277
    Author:William Moebs, Samuel J. Ling, Jeff Sanny
    Publisher:OpenStax - Rice University
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY