BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Evaluate the integrals in Problems 7-36. Check your results by differentiation.

4 x 3 (7 x 4 +12) 3   d x

To determine

To calculate: The value of the integral 4x3(7x4+12)3dx.

Explanation

Given Information:

The provided integral is 4x3(7x4+12)dx

Formula used:

The power formula of integrals:

undu=un+1n+1+C (forn1)

The power rule of differentiation:

ddu(un)=nun1

Calculation:

Consider the provided integral:

4x3(7x4+12)3dx

Rewrite the integral by multiplying and dividing by 7 as:

1728x3(7x4+12)3dx

Let u=7x4+12, then derivative will be,

du=d(7x4+12)=28x3dx

Substitute du for 28x3dx and u for 7x4+12 in provided integration.

1728x3(7x4+12)3dx=17u3du

Now apply, the power formula of integrals:

undu=

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-9ESect-12.1 P-10ESect-12.1 P-11ESect-12.1 P-12ESect-12.1 P-13ESect-12.1 P-14ESect-12.1 P-15ESect-12.1 P-16ESect-12.1 P-17ESect-12.1 P-18ESect-12.1 P-19ESect-12.1 P-20ESect-12.1 P-21ESect-12.1 P-22ESect-12.1 P-23ESect-12.1 P-24ESect-12.1 P-25ESect-12.1 P-26ESect-12.1 P-27ESect-12.1 P-28ESect-12.1 P-29ESect-12.1 P-30ESect-12.1 P-31ESect-12.1 P-32ESect-12.1 P-33ESect-12.1 P-34ESect-12.1 P-35ESect-12.1 P-36ESect-12.1 P-37ESect-12.1 P-38ESect-12.1 P-39ESect-12.1 P-40ESect-12.1 P-41ESect-12.1 P-42ESect-12.1 P-43ESect-12.1 P-44ESect-12.1 P-45ESect-12.1 P-46ESect-12.1 P-47ESect-12.1 P-48ESect-12.1 P-49ESect-12.1 P-50ESect-12.1 P-51ESect-12.1 P-52ESect-12.1 P-53ESect-12.1 P-54ESect-12.1 P-55ESect-12.1 P-56ESect-12.2 P-1CPSect-12.2 P-2CPSect-12.2 P-3CPSect-12.2 P-4CPSect-12.2 P-1ESect-12.2 P-2ESect-12.2 P-3ESect-12.2 P-4ESect-12.2 P-5ESect-12.2 P-6ESect-12.2 P-7ESect-12.2 P-8ESect-12.2 P-9ESect-12.2 P-10ESect-12.2 P-11ESect-12.2 P-12ESect-12.2 P-13ESect-12.2 P-14ESect-12.2 P-15ESect-12.2 P-16ESect-12.2 P-17ESect-12.2 P-18ESect-12.2 P-19ESect-12.2 P-20ESect-12.2 P-21ESect-12.2 P-22ESect-12.2 P-23ESect-12.2 P-24ESect-12.2 P-25ESect-12.2 P-26ESect-12.2 P-27ESect-12.2 P-28ESect-12.2 P-29ESect-12.2 P-30ESect-12.2 P-31ESect-12.2 P-32ESect-12.2 P-33ESect-12.2 P-34ESect-12.2 P-35ESect-12.2 P-36ESect-12.2 P-37ESect-12.2 P-38ESect-12.2 P-39ESect-12.2 P-40ESect-12.2 P-41ESect-12.2 P-42ESect-12.2 P-43ESect-12.2 P-44ESect-12.2 P-45ESect-12.2 P-46ESect-12.2 P-47ESect-12.2 P-48ESect-12.2 P-49ESect-12.2 P-50ESect-12.2 P-51ESect-12.2 P-52ESect-12.2 P-53ESect-12.2 P-54ESect-12.3 P-1CPSect-12.3 P-2CPSect-12.3 P-3CPSect-12.3 P-1ESect-12.3 P-2ESect-12.3 P-3ESect-12.3 P-4ESect-12.3 P-5ESect-12.3 P-6ESect-12.3 P-7ESect-12.3 P-8ESect-12.3 P-9ESect-12.3 P-10ESect-12.3 P-11ESect-12.3 P-12ESect-12.3 P-13ESect-12.3 P-14ESect-12.3 P-15ESect-12.3 P-16ESect-12.3 P-17ESect-12.3 P-18ESect-12.3 P-19ESect-12.3 P-20ESect-12.3 P-21ESect-12.3 P-22ESect-12.3 P-23ESect-12.3 P-24ESect-12.3 P-25ESect-12.3 P-26ESect-12.3 P-27ESect-12.3 P-28ESect-12.3 P-29ESect-12.3 P-30ESect-12.3 P-31ESect-12.3 P-32ESect-12.3 P-33ESect-12.3 P-34ESect-12.3 P-35ESect-12.3 P-36ESect-12.3 P-37ESect-12.3 P-38ESect-12.3 P-39ESect-12.3 P-40ESect-12.3 P-41ESect-12.3 P-42ESect-12.3 P-43ESect-12.3 P-44ESect-12.3 P-45ESect-12.3 P-46ESect-12.3 P-47ESect-12.3 P-48ESect-12.3 P-49ESect-12.3 P-50ESect-12.3 P-56ESect-12.4 P-1CPSect-12.4 P-2CPSect-12.4 P-3CPSect-12.4 P-4CPSect-12.4 P-1ESect-12.4 P-2ESect-12.4 P-3ESect-12.4 P-4ESect-12.4 P-5ESect-12.4 P-6ESect-12.4 P-7ESect-12.4 P-8ESect-12.4 P-9ESect-12.4 P-10ESect-12.4 P-11ESect-12.4 P-12ESect-12.4 P-13ESect-12.4 P-14ESect-12.4 P-15ESect-12.4 P-16ESect-12.4 P-17ESect-12.4 P-18ESect-12.4 P-19ESect-12.4 P-20ESect-12.4 P-21ESect-12.4 P-23ESect-12.4 P-24ESect-12.4 P-26ESect-12.5 P-1CPSect-12.5 P-2CPSect-12.5 P-3CPSect-12.5 P-1ESect-12.5 P-2ESect-12.5 P-3ESect-12.5 P-4ESect-12.5 P-5ESect-12.5 P-6ESect-12.5 P-7ESect-12.5 P-8ESect-12.5 P-9ESect-12.5 P-10ESect-12.5 P-11ESect-12.5 P-12ESect-12.5 P-13ESect-12.5 P-14ESect-12.5 P-15ESect-12.5 P-16ESect-12.5 P-17ESect-12.5 P-18ESect-12.5 P-19ESect-12.5 P-20ESect-12.5 P-21ESect-12.5 P-22ESect-12.5 P-23ESect-12.5 P-24ESect-12.5 P-25ESect-12.5 P-26ESect-12.5 P-27ESect-12.5 P-28ESect-12.5 P-29ESect-12.5 P-30ESect-12.5 P-31ESect-12.5 P-32ESect-12.5 P-33ESect-12.5 P-34ESect-12.5 P-35ESect-12.5 P-36ESect-12.5 P-37ESect-12.5 P-38ESect-12.5 P-39ESect-12.5 P-40ESect-12.5 P-41ESect-12.5 P-42ESect-12.5 P-43ESect-12.5 P-44ESect-12.5 P-45ESect-12.5 P-46ESect-12.5 P-47ESect-12.5 P-48ESect-12.5 P-49ESect-12.5 P-50ESect-12.5 P-51ESect-12.5 P-52ESect-12.5 P-53ESect-12.5 P-54ESect-12.5 P-55ESect-12.5 P-56ESect-12.5 P-57ESect-12.5 P-58ECh-12 P-1RECh-12 P-2RECh-12 P-3RECh-12 P-4RECh-12 P-5RECh-12 P-6RECh-12 P-7RECh-12 P-8RECh-12 P-9RECh-12 P-10RECh-12 P-11RECh-12 P-12RECh-12 P-13RECh-12 P-14RECh-12 P-15RECh-12 P-16RECh-12 P-17RECh-12 P-18RECh-12 P-19RECh-12 P-20RECh-12 P-21RECh-12 P-22RECh-12 P-23RECh-12 P-24RECh-12 P-25RECh-12 P-26RECh-12 P-27RECh-12 P-28RECh-12 P-29RECh-12 P-30RECh-12 P-31RECh-12 P-32RECh-12 P-33RECh-12 P-34RECh-12 P-35RECh-12 P-36RECh-12 P-37RECh-12 P-38RECh-12 P-39RECh-12 P-40RECh-12 P-41RECh-12 P-42RECh-12 P-43RECh-12 P-44RECh-12 P-45RECh-12 P-46RECh-12 P-47RECh-12 P-48RECh-12 P-49RECh-12 P-1TCh-12 P-2TCh-12 P-3TCh-12 P-4TCh-12 P-5TCh-12 P-6TCh-12 P-7TCh-12 P-8TCh-12 P-9TCh-12 P-10TCh-12 P-11TCh-12 P-12TCh-12 P-13TCh-12 P-14TCh-12 P-15TCh-12 P-16TCh-12 P-17TCh-12 P-18TCh-12 P-19TCh-12 P-20TCh-12 P-21TCh-12 P-22T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Find the slope and y-intercept of the lines and draw its graph. 42. 4x + 5y = 10

Single Variable Calculus: Early Transcendentals, Volume I

In Exercises 6372, evaluate the expression. 71. 21+32

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Sketch the vector field F by drawing a diagram as in Figure 5. 10. F(x, y, z) = yk

Precalculus: Mathematics for Calculus (Standalone Book)

Multiply. (x+y)2

Trigonometry (MindTap Course List)

A parameterization of the curve at the right is:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: All the hypotheses for the Mean Value Theorem hold for f(x) = 1 − |x| on [−1, 2].

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th