BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042

Solutions

Chapter
Section
BuyFindarrow_forward

Mathematical Applications for the ...

11th Edition
Ronald J. Harshbarger + 1 other
ISBN: 9781305108042
Textbook Problem

Which of the following can be evaluated with the Power Rule?

(a)  ( 4 x 2 + 1 ) 10 ( 8 x d x ) (b)  ( 4 x 2 + 1 ) 10 ( x d x ) (c)  ( 4 x 2 + 1 ) 10 ( 8 d x ) (d)  ( 4 x 2 + 1 ) 10 d x

To determine

Which integral can be evaluated with the help of power rule. If the provided options are given below,

(a)(4x2+1)10(8x)dx(b)(4x2+1)10(x)dx(c)(4x2+1)108dx(d)(4x2+1)10dx

Explanation

Given Information:

The provided options are

(a)(4x2+1)10(8x)dx(b)(4x2+1)10(x)dx(c)(4x2+1)108dx(d)(4x2+1)10dx

Explanation:

Consider the option (a), (4x2+1)10(8x)dx

Use the power rule undu=un+1n+1+C, if u=u(x) and the derivative of u is u(x) and n1.

Here,

u=4x2+1

Then, on obtaining differentials,

du=8x

Since, there is presence of the factor x in the term 8x of the provided integral.

Therefore, the power rule can be used to evaluate the provided integral.

Now consider the option (b), (4x2+1)10(x)dx

Rewrite the provided integral by dividing and multiplying by 8 as,

18(4x2+1)10(8x)dx

Use the power rule undu=un+1n+1+C, if u=u(x) and the derivative of u is u(x) and n1

Still sussing out bartleby?

Check out a sample textbook solution.

See a sample solution

The Solution to Your Study Problems

Bartleby provides explanations to thousands of textbook problems written by our experts, many with advanced degrees!

Get Started

Chapter 12 Solutions

Show all chapter solutions add
Sect-12.1 P-9ESect-12.1 P-10ESect-12.1 P-11ESect-12.1 P-12ESect-12.1 P-13ESect-12.1 P-14ESect-12.1 P-15ESect-12.1 P-16ESect-12.1 P-17ESect-12.1 P-18ESect-12.1 P-19ESect-12.1 P-20ESect-12.1 P-21ESect-12.1 P-22ESect-12.1 P-23ESect-12.1 P-24ESect-12.1 P-25ESect-12.1 P-26ESect-12.1 P-27ESect-12.1 P-28ESect-12.1 P-29ESect-12.1 P-30ESect-12.1 P-31ESect-12.1 P-32ESect-12.1 P-33ESect-12.1 P-34ESect-12.1 P-35ESect-12.1 P-36ESect-12.1 P-37ESect-12.1 P-38ESect-12.1 P-39ESect-12.1 P-40ESect-12.1 P-41ESect-12.1 P-42ESect-12.1 P-43ESect-12.1 P-44ESect-12.1 P-45ESect-12.1 P-46ESect-12.1 P-47ESect-12.1 P-48ESect-12.1 P-49ESect-12.1 P-50ESect-12.1 P-51ESect-12.1 P-52ESect-12.1 P-53ESect-12.1 P-54ESect-12.1 P-55ESect-12.1 P-56ESect-12.2 P-1CPSect-12.2 P-2CPSect-12.2 P-3CPSect-12.2 P-4CPSect-12.2 P-1ESect-12.2 P-2ESect-12.2 P-3ESect-12.2 P-4ESect-12.2 P-5ESect-12.2 P-6ESect-12.2 P-7ESect-12.2 P-8ESect-12.2 P-9ESect-12.2 P-10ESect-12.2 P-11ESect-12.2 P-12ESect-12.2 P-13ESect-12.2 P-14ESect-12.2 P-15ESect-12.2 P-16ESect-12.2 P-17ESect-12.2 P-18ESect-12.2 P-19ESect-12.2 P-20ESect-12.2 P-21ESect-12.2 P-22ESect-12.2 P-23ESect-12.2 P-24ESect-12.2 P-25ESect-12.2 P-26ESect-12.2 P-27ESect-12.2 P-28ESect-12.2 P-29ESect-12.2 P-30ESect-12.2 P-31ESect-12.2 P-32ESect-12.2 P-33ESect-12.2 P-34ESect-12.2 P-35ESect-12.2 P-36ESect-12.2 P-37ESect-12.2 P-38ESect-12.2 P-39ESect-12.2 P-40ESect-12.2 P-41ESect-12.2 P-42ESect-12.2 P-43ESect-12.2 P-44ESect-12.2 P-45ESect-12.2 P-46ESect-12.2 P-47ESect-12.2 P-48ESect-12.2 P-49ESect-12.2 P-50ESect-12.2 P-51ESect-12.2 P-52ESect-12.2 P-53ESect-12.2 P-54ESect-12.3 P-1CPSect-12.3 P-2CPSect-12.3 P-3CPSect-12.3 P-1ESect-12.3 P-2ESect-12.3 P-3ESect-12.3 P-4ESect-12.3 P-5ESect-12.3 P-6ESect-12.3 P-7ESect-12.3 P-8ESect-12.3 P-9ESect-12.3 P-10ESect-12.3 P-11ESect-12.3 P-12ESect-12.3 P-13ESect-12.3 P-14ESect-12.3 P-15ESect-12.3 P-16ESect-12.3 P-17ESect-12.3 P-18ESect-12.3 P-19ESect-12.3 P-20ESect-12.3 P-21ESect-12.3 P-22ESect-12.3 P-23ESect-12.3 P-24ESect-12.3 P-25ESect-12.3 P-26ESect-12.3 P-27ESect-12.3 P-28ESect-12.3 P-29ESect-12.3 P-30ESect-12.3 P-31ESect-12.3 P-32ESect-12.3 P-33ESect-12.3 P-34ESect-12.3 P-35ESect-12.3 P-36ESect-12.3 P-37ESect-12.3 P-38ESect-12.3 P-39ESect-12.3 P-40ESect-12.3 P-41ESect-12.3 P-42ESect-12.3 P-43ESect-12.3 P-44ESect-12.3 P-45ESect-12.3 P-46ESect-12.3 P-47ESect-12.3 P-48ESect-12.3 P-49ESect-12.3 P-50ESect-12.3 P-56ESect-12.4 P-1CPSect-12.4 P-2CPSect-12.4 P-3CPSect-12.4 P-4CPSect-12.4 P-1ESect-12.4 P-2ESect-12.4 P-3ESect-12.4 P-4ESect-12.4 P-5ESect-12.4 P-6ESect-12.4 P-7ESect-12.4 P-8ESect-12.4 P-9ESect-12.4 P-10ESect-12.4 P-11ESect-12.4 P-12ESect-12.4 P-13ESect-12.4 P-14ESect-12.4 P-15ESect-12.4 P-16ESect-12.4 P-17ESect-12.4 P-18ESect-12.4 P-19ESect-12.4 P-20ESect-12.4 P-21ESect-12.4 P-23ESect-12.4 P-24ESect-12.4 P-26ESect-12.5 P-1CPSect-12.5 P-2CPSect-12.5 P-3CPSect-12.5 P-1ESect-12.5 P-2ESect-12.5 P-3ESect-12.5 P-4ESect-12.5 P-5ESect-12.5 P-6ESect-12.5 P-7ESect-12.5 P-8ESect-12.5 P-9ESect-12.5 P-10ESect-12.5 P-11ESect-12.5 P-12ESect-12.5 P-13ESect-12.5 P-14ESect-12.5 P-15ESect-12.5 P-16ESect-12.5 P-17ESect-12.5 P-18ESect-12.5 P-19ESect-12.5 P-20ESect-12.5 P-21ESect-12.5 P-22ESect-12.5 P-23ESect-12.5 P-24ESect-12.5 P-25ESect-12.5 P-26ESect-12.5 P-27ESect-12.5 P-28ESect-12.5 P-29ESect-12.5 P-30ESect-12.5 P-31ESect-12.5 P-32ESect-12.5 P-33ESect-12.5 P-34ESect-12.5 P-35ESect-12.5 P-36ESect-12.5 P-37ESect-12.5 P-38ESect-12.5 P-39ESect-12.5 P-40ESect-12.5 P-41ESect-12.5 P-42ESect-12.5 P-43ESect-12.5 P-44ESect-12.5 P-45ESect-12.5 P-46ESect-12.5 P-47ESect-12.5 P-48ESect-12.5 P-49ESect-12.5 P-50ESect-12.5 P-51ESect-12.5 P-52ESect-12.5 P-53ESect-12.5 P-54ESect-12.5 P-55ESect-12.5 P-56ESect-12.5 P-57ESect-12.5 P-58ECh-12 P-1RECh-12 P-2RECh-12 P-3RECh-12 P-4RECh-12 P-5RECh-12 P-6RECh-12 P-7RECh-12 P-8RECh-12 P-9RECh-12 P-10RECh-12 P-11RECh-12 P-12RECh-12 P-13RECh-12 P-14RECh-12 P-15RECh-12 P-16RECh-12 P-17RECh-12 P-18RECh-12 P-19RECh-12 P-20RECh-12 P-21RECh-12 P-22RECh-12 P-23RECh-12 P-24RECh-12 P-25RECh-12 P-26RECh-12 P-27RECh-12 P-28RECh-12 P-29RECh-12 P-30RECh-12 P-31RECh-12 P-32RECh-12 P-33RECh-12 P-34RECh-12 P-35RECh-12 P-36RECh-12 P-37RECh-12 P-38RECh-12 P-39RECh-12 P-40RECh-12 P-41RECh-12 P-42RECh-12 P-43RECh-12 P-44RECh-12 P-45RECh-12 P-46RECh-12 P-47RECh-12 P-48RECh-12 P-49RECh-12 P-1TCh-12 P-2TCh-12 P-3TCh-12 P-4TCh-12 P-5TCh-12 P-6TCh-12 P-7TCh-12 P-8TCh-12 P-9TCh-12 P-10TCh-12 P-11TCh-12 P-12TCh-12 P-13TCh-12 P-14TCh-12 P-15TCh-12 P-16TCh-12 P-17TCh-12 P-18TCh-12 P-19TCh-12 P-20TCh-12 P-21TCh-12 P-22T

Additional Math Solutions

Find more solutions based on key concepts

Show solutions add

Solve the equations in Exercises 126. (x2+1)x+1(x+1)3=0

Finite Mathematics and Applied Calculus (MindTap Course List)

Evaluate the integral. 02/2x21x2dx

Calculus (MindTap Course List)

In Exercises 4954, find an equation of the line that satisfies the given condition. 53. The line passing throug...

Applied Calculus for the Managerial, Life, and Social Sciences: A Brief Approach

Evaluate without using a calculator. tan1(tan30)

Trigonometry (MindTap Course List)

Find dy/dx by implicit differentiation. 9. x2x+y=y2+1

Single Variable Calculus: Early Transcendentals

The polar coordinates of the point P in the figure at the right are:

Study Guide for Stewart's Multivariable Calculus, 8th

True or False: By the Integral Test, converges.

Study Guide for Stewart's Single Variable Calculus: Early Transcendentals, 8th

Determine whether each function even, odd, or neither.

College Algebra (MindTap Course List)