Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
4th Edition
ISBN: 9780134639673
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 8RQ

A Pitot tube is a device used to measure the velocity of a fluid, typically, the airspeed of an aircraft. The failure of a pitot tube is credited as the cause of Austral Lines Aéreas flight 2553 crash in October 1997. The pitot tube had frozen, causing the instrument to give a false reading of slowing speed. As a result, the pilots thought the plane was slowing down, so they increased the speed and tried to maintain their attitude by lowering the wing slats. Actually, they were flying at such a high speed that one of the slats ripped off, causing the plane to nosedive, the plane crashed at a speed 745 miles per hour.

In the pitot tube, as the fluid moves, the velocity creates a pressure difference between the ends of a small tube. The tubes are calibrated to relate the pressure measured to a specific velocity. This velocity is a function of the pressure difference (P, in units of pascals) and the density of the fluid (ρ in units of kilograms per cubic meter)

υ = ( 2 ρ ) 0.5 P m

Chapter 13, Problem 8RQ, A Pitot tube is a device used to measure the velocity of a fluid, typically, the airspeed of an

Fluid Specific Gravity
Acetone 0.79
Citric acid 1.67
Glycerin 1.26
Mineral Oil 0.90
  1. a. Show the resulting data trendline, with equation and R2 value, on the appropriate graph type (xy scatter, semilog, or log–log) to make the data appear linear.
  2. b. Determine the value and units of the density for each data set using the trendline equation.
  3. c. From the chart at left, match each data set (A, B) with the correct fluid name according to the results of the density determined from the trendlines.
Blurred answer
Students have asked these similar questions
Cardiologists use the short-range scaling exponent α1, which measures the randomness of heart rate patterns, as a tool to assess risk of heart attack. The article “Applying Fractal Analysis to Short Sets of Heart Rate Variability Data” compared values of α1 computed from long series of measurements (approximately 40,000 heartbeats) with those estimated from the first 300 beats to determine how well the long-term measurement (y) could be predicted the short-term one (x). Following are the data (obtained by digitizing a graph).  Short Long 0.54 0.55 1.02 0.79 1.4 0.81 0.88 0.9 1.68 1.05 1.16 1.05 0.82 1.05 0.93 1.07 1.26 1.1 1.18 1.19 0.81 1.19 0.81 1.2 1.28 1.23 1.18 1.23 0.71 1.24   Note: This problem has a reduced data set for ease of performing the calculations required. This differs from the data set given for this problem in the text.     Compute the least-squares line for predicting the long-term measurement from the short-term measurement.…
In the field of air pollution control, one often needs to sample the quality of a moving airstream. In such measurements a sampling probe is aligned with the flow as sketched in Fig. A suction pump draws air through the probe at volume flow rate V· as sketched. For accurate sampling, the air speed through the probe should be the same as that of the airstream (isokinetic sampling). However, if the applied suction is too large, as sketched in Fig, the air speed through the probe is greater than that of the airstream (super iso kinetic sampling). For simplicity consider a two-dimensional case in which the sampling probe height is h = 4.58 mm and its width is W = 39.5 mm. The values of the stream function corresponding to the lower and upper dividing streamlines are ?l = 0.093 m2/s and ?u = 0.150 m2/s, respectively. Calculate the volume flow rate through the probe (in units of m3/s) and the average speed of the air sucked through the probe.
Somewhere DEEP BELOW THE EARTH's surface, at an UNKNOWN displacement from the Earth's center, a particle of mass m is dangled from a long string, length L; the particle oscillates along a small arc according to the differential equation d^2x/dt^2=-(pi^2/36)x. Here x refers to an angular displacement measured from the vertical and t refers to time.  The particle's mass is given by m=3kg. The length of the string is given by L=5 meters. Whenever the particle arrives at a location of x=(pi/12) radians from the vertical, the particle has no instantaneous speed. On both sides of the vertical, that is, x=(pi/12) radians is repeatedly observed to be a 'turning point' for the particle's periodic motion. 1. Draw a clear FREE-BODY diagram of this particle at some arbitrary point during oscillation, making sure to label variables and constants described above. 2. Approximating to three significant digits if necessary, what is the angular frequency of this oscillator on a string? 3. Approximating…

Chapter 13 Solutions

Thinking Like an Engineer: An Active Learning Approach (4th Edition)

Ch. 13 - Prob. 7ICACh. 13 - The following instructions apply to ICA 13-7 to...Ch. 13 - The following instructions apply to ICA 13-7 to...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - Prob. 21ICACh. 13 - As a reminder, the Reynolds number is discussed in...Ch. 13 - As a reminder, the Reynolds number is discussed in...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - A growing field of inquiry that poses both great...Ch. 13 - If an object is heated, the temperature of the...Ch. 13 - The Volcanic Explosivity Index (VEI) is based...Ch. 13 - You are an engineer for a plastics manufacturing...Ch. 13 - A Pitot tube is a device used to measure the...Ch. 13 - As part of an electronic music synthesizer you...Ch. 13 - The following data were collected during testing...Ch. 13 - The relationship of the power required by a...Ch. 13 - When a fluid flows around an object, it creates a...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Locate the centroid of the area. Prob. 9-17

INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)

For the beam loading of Figure P334, draw the complete shearing force and bending moment diagrams, and determin...

Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
What is Metrology in Mechanical Engineering? | Terminologies & Measurement; Author: GaugeHow;https://www.youtube.com/watch?v=_KhMhFRehy8;License: Standard YouTube License, CC-BY