Package: Vector Mechanics for Engineers: Dynamics with 2 Semester Connect Access Card
Package: Vector Mechanics for Engineers: Dynamics with 2 Semester Connect Access Card
11th Edition
ISBN: 9781259633126
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Videos

Textbook Question
Book Icon
Chapter 13.2, Problem 13.64P

A 2-kg collar is attached to a spring and slides without friction in a vertical plane along the curved rod ABC. The spring is undeformed when the collar is at C and its constant is 600 N/m. if the collar is released at A with no initial velocity, determine its velocity (a) as it passes through B, (b) as it reaches C.

    Chapter 13.2, Problem 13.64P, A 2-kg collar is attached to a spring and slides without friction in a vertical plane along the

Expert Solution
Check Mark
To determine

(a)

Velocity of collar as it passes through B.

Answer to Problem 13.64P

Velocity of collar as it passes through B is 2.485 m/s.

Explanation of Solution

Given:

Mass of collar is 2 kg.

Spring constant is 600N/m.

Initial velocity at A is 0 m/s.

Concept used:

Refer to Fig.P13.64;

Calculate the elongation of the spring when collar is at point A.

eA=lOAlOC   ...... (1)

Here, eA is the elongation in spring at point A, lOA is the length OA and lOC is the length OC.

Calculate the elongation of the spring when collar is at point B.

eB=lOBlOC   ...... (2)

Here, eB is the elongation in spring at point B, lOB is the length OB and lOC is the length OC.

Calculate the elongation of the spring when collar is at point C.

eC=0

Here, eC is the elongation of spring at C.

Write the expression for Potential energy of spring at point A.

VA=12keA2   ...... (3)

Here, VA is the potential energy at point A and k is the spring constant.

Write the expression for Potential energy of spring at point B.

VB=12keB2   ...... (4)

Here, VB is the potential energy at point B.

Write the expression for Potential energy of spring at point A.

VC=12keC2   ...... (5)

Here, VC is the potential energy at point C.

Write the expression for the kinetic energy of collar at point A.

TA=12mvA2   ...... (6)

Here, TA is the kinetic energy of collar at point A, m is the mass of collar and vA is the velocity of collar at point A.

Write the expression for the kinetic energy of collar at point B.

TB=12mvB2   ...... (7)

Here, TB is the kinetic energy of collar at point B and vB is the velocity of collar at point C.

Write the expression for the kinetic energy of collar at point C.

TC=12mvC2   ...... (8)

Here, TC is the kinetic energy of collar at point C and vC is the velocity of collar at point C.

Consider the datum to be the surface.

Write the expression for the gravitational potential energy at point B.

VBg=mg(lOB)   ...... (9)

Here, VBg is the gravitational potential energy at point B and g is acceleration due to gravity.

The gravitational potential energy at point A and C will be zero as they are on datum.

Write the expression of conservation of energy for the system at point B.

TA+VA+VAg=TB+VB+VBg   ...... (10)

Calculation:

Substitute 250 mm for lOA and 150 mm for lOC in equation (1).

eA=250150=100 mm

Substitute 200 mm for lOB and 150 mm for lOC in equation (2).

eB=200150=50mm

Substitute 600N/m for k and 100 mm for eA in equation (3).

VA=12(600)(100 mm(1 m1000 mm))2=3 J

Substitute 600N/m for k and 50 mm for eB in equation (4).

VB=12(600)(50 mm(1 m1000 mm))2=0.75 J

Substitute 600N/m for k and 0 mm for eC in equation (5).

VC=12(600)(0 mm)2=0 J

Substitute 2 kg for m and 0 m/s for vA in equation (6).

TA=12(2 kg)(0 m/s)=0J

Substitute 2 kg for m in equation (7).

TB=12(2 kg)vB2=vB2

Substitute 2 kg for m, 200 mm for lOB and 9.81 m/s2 for g in equation (9).

VBg=(2 kg)(9.81 m/s2)(200mm(1 m1000 mm))=3.924J

Substitute 0 for TA, 3 J for VA, 0 for VAg, vB2 for TB, 0.75 J for VB and 3.924 J for VBg in equation (10).

0+3+0=vB2+0.753.924

Simplify the above expression for vB.

vB=2.485 m/s

Velocity of collar as it passes through B is 2.485 m/s.

Conclusion:

Thus, Velocity of collar as it passes through B is 2.485 m/s.

Expert Solution
Check Mark
To determine

(b)

Velocity of collar as it passes through C.

Answer to Problem 13.64P

Velocity of collar as it passes through C is 1.732 m/s.

Explanation of Solution

Write the expression of conservation of energy for the system at point C.

TA+VA+VAg=TC+VC+VCg   ...... (11)

Calculation:

Substitute 2 kg for m in equation (8).

TA=12(2 kg)vc2=vc2

Substitute 0 for TA, 3 J for VA, 0 for VAg, vc2 for TC, 0 J for VC and 0 J for VCg in equation (11).

0+3+0=vc2+0+0

Simplify the above expression for vc.

vc=1.732 m/s

Velocity of collar as it passes through C is 1.732 m/s.

Conclusion:

Thus, Velocity of collar as it passes through C is 1.732 m/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
While cruising in level flight at a speed of 570 mi/h, a jet airplane scoops in air at a rate of 240 lb/s and discharges it with a velocity of 2200 ft/s relative to the airplane. Determine (a) the power actually used to propel the airplane, (b) the total power developed by the engine, (c) the mechanical efficiency of the airplane.
A 1-lb collar is attached to a spring and slides without friction along a circular rod in a vertical plane. The spring has an undeformed length of 5 in. and a constant k= 10 lb/ft. Knowing that the collar is released from being held at A determine the speed of the collar and the normal force between the collar and the rod as the collar passes through B.
A toy car is propelled by water that squirts from an internal tank. The weight of the empty car is 0.4 lb and it holds 2 lb of water. Knowing the top speed of the car is 8 ft/s, determine the relative velocity of the water that is being ejected.

Chapter 13 Solutions

Package: Vector Mechanics for Engineers: Dynamics with 2 Semester Connect Access Card

Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - A trailer truck enters a 2 percent uphill grade...Ch. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - The subway train shown is travelling at a speed of...Ch. 13.1 - Blocks A and B weigh 25 Ib and 10 Ib,...Ch. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - The system shown is at rest when a constant 250-N...Ch. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg....Ch. 13.1 - Four 3-kg packages are held in place by friction...Ch. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26. assuming that the 2-kg block is...Ch. 13.1 - People with mobility impairments can gain great...Ch. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - A piston of mass m and cross-sectional area A is...Ch. 13.1 - An uncontrolled automobile travelling at 65 mph...Ch. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Nonlinear springs are classified as hard or soft,...Ch. 13.1 - A meteor starts from rest at a very great distance...Ch. 13.1 - Express the acceleration of gravity gh, at an...Ch. 13.1 - Prob. 13.38PCh. 13.1 - The sphere at A is given a downward velocity v0 of...Ch. 13.1 - The sphere at Ais given a downward velocity v0and...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42. determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - A small block slides at a speed v=8 ft/s on a...Ch. 13.1 - A chairlift is designed to transport 1000 skiers...Ch. 13.1 - Prob. 13.47PCh. 13.1 - The velocity of the lift of Prob. 13.47 increases...Ch. 13.1 - (a) A 120-lb woman rides a 15-lb bicycle up a...Ch. 13.1 - Prob. 13.50PCh. 13.1 - Prob. 13.51PCh. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - A small blocks is released from rest and slides...Ch. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - A 4-Ib collar can slide without friciton along a...Ch. 13.2 - A 4-Ib collar can slide without friction along a...Ch. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28....Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - Prob. 13.63PCh. 13.2 - A 2-kg collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.65PCh. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - Prob. 13.70PCh. 13.2 - Prob. 13.71PCh. 13.2 - Prob. 13.72PCh. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - An 8-oz package is projected upward with a...Ch. 13.2 - If the package of Prob. 13.74 is not to hit the...Ch. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - The pendulum shown is released from rest at A and...Ch. 13.2 - Prob. 13.79PCh. 13.2 - Prob. 13.80PCh. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - (a) Determine the kinetic energy per unit mass...Ch. 13.2 - Prob. 13.86PCh. 13.2 - Prob. 13.87PCh. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - Prob. 13.92PCh. 13.2 - Prob. 13.93PCh. 13.2 - Prob. 13.94PCh. 13.2 - Prob. 13.95PCh. 13.2 - Prob. 13.96PCh. 13.2 - Prob. 13.97PCh. 13.2 - Prob. 13.98PCh. 13.2 - Prob. 13.99PCh. 13.2 - Prob. 13.100PCh. 13.2 - Prob. 13.101PCh. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - Prob. 13.110PCh. 13.2 - Prob. 13.111PCh. 13.2 - Prob. 13.112PCh. 13.2 - Prob. 13.113PCh. 13.2 - Prob. 13.114PCh. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass mdescribes a circular orbit...Ch. 13.2 - Prob. 13.117PCh. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - The initial velocity of the block in position A is...Ch. 13.3 - Prob. 13.F2PCh. 13.3 - Prob. 13.F3PCh. 13.3 - Car A was traveling west at a speed of 15 m/s and...Ch. 13.3 - Prob. 13.F5PCh. 13.3 - A 35.000-Mg ocean liner has an initial velocity of...Ch. 13.3 - Prob. 13.120PCh. 13.3 - A sailboat weighing 980 lb with its occupants is...Ch. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Baggage on the floor of the baggage car of a...Ch. 13.3 - Prob. 13.126PCh. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - Prob. 13.131PCh. 13.3 - The system shown is at rest when a constant 150-N...Ch. 13.3 - Prob. 13.133PCh. 13.3 - Prob. 13.134PCh. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - A 1.6 2-oz golf ball is hit with a golf club and...Ch. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - Prob. 13.142PCh. 13.3 - Prob. 13.143PCh. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - A 25-ton railroad car moving at 2.5 mi/h is to be...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Prob. 13.149PCh. 13.3 - Prob. 13.150PCh. 13.3 - Prob. 13.151PCh. 13.3 - Prob. 13.152PCh. 13.3 - A 1-az bullet is traveling with velocity of 1400...Ch. 13.3 - In order to test the resistance of a chain to...Ch. 13.4 - A 5 -kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - F6 A sphere with a speed v0 rebounds after...Ch. 13.4 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 13.4 - Prob. 13.F8PCh. 13.4 - Prob. 13.F9PCh. 13.4 - Block A of mass mA strikes ball B of mass mB with...Ch. 13.4 - Prob. 13.155PCh. 13.4 - Collars A and B, of the same mass m, are moving...Ch. 13.4 - One of the requirements for tennis balls to be...Ch. 13.4 - Prob. 13.158PCh. 13.4 - Prob. 13.159PCh. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Three steel spheres of equal mass are suspended...Ch. 13.4 - Prob. 13.162PCh. 13.4 - Prob. 13.163PCh. 13.4 - Two identical billiard balls can move freely on a...Ch. 13.4 - Prob. 13.165PCh. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - The Mars Pathfinder spacecraft used large airbags...Ch. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Rockfalls can cause major damage to roads and...Ch. 13.4 - Prob. 13.173PCh. 13.4 - cars of the same mass run head-on into each other...Ch. 13.4 - Prob. 13.175PCh. 13.4 - Prob. 13.176PCh. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Blocks A and B each weigh 0.8 lb and block C...Ch. 13.4 - A 5-kg sphere is dropped from a height of y=2 m to...Ch. 13.4 - Prob. 13.180PCh. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Prob. 13.185PCh. 13.4 - Prob. 13.186PCh. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of a=30 , the 1-Ib...Ch. 13.4 - Prob. 13.189PCh. 13 - A 32,000-Ib airplane lands on an aircraft carrier...Ch. 13 - A 2-oz pellet shot vertically from a spring-loaded...Ch. 13 - A satellite describes an elliptic orbit about a...Ch. 13 - Prob. 13.193RPCh. 13 - Prob. 13.194RPCh. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - A 300-g collar A is released from rest, slids down...Ch. 13 - Prob. 13.198RPCh. 13 - Prob. 13.199RPCh. 13 - Prob. 13.200RPCh. 13 - The 2-Ib ball at A is suspended by an inextensible...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License