CHEMISTRY (CUSTOM F/CHE 111/112)
CHEMISTRY (CUSTOM F/CHE 111/112)
3rd Edition
ISBN: 9781264063802
Author: Burdge
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 135AP

Polyethylene is used in many items, including water pipes, bottles, electrical insulation, toys, and mailer envelopes. It is a polymer, a molecule with a very high molar mass made by joining many ethylene molecules together. (Ethylene is the basic unit, or monomer, for polyethylene.) The initiation step is:

R 2 K 1 2 R                                                    ( initiation )

The R •� species (called a radical) reacts with an ethylene molecule (M) to generate another radical:

R + M   M 1

The reaction of M 1 with another monomer leads to the growth or propagation of the polymer chain:

M 1  + M  k p  M 2                                     ( propagation )

This step can be repeated with hundreds of monomer units. The propagation terminates when two radicals combine:

M' M" k 1  M' - M"                                     (termination)

The initiator frequently used in the polymerization of ethylene is benzoyl peroxide ( ( C 6 H 5 COO ) 2 ] :

(C 6 H 5 COO) 2    2C 6 H 5 COO

This is a first-order reaction. The half-life of benzoyl peroxide at 100°C is 19.8 min. (a) Calculate the rate constant ( in min -1 ) of the reaction. (b) If the half-life of benzoyl peroxide is 7.30 h, or 438 min, at 70°C, what is the activation energy ( in kJ/mol ) for the decomposition of benzoyl peroxide? (c) Write the rate laws for the elementary steps in the preceding polymerization process, and identify the reactant, product, and intermediates. (d) What condition would favor the growth of long, high-molar-mass polyethylenes?

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation:

The rate constant, activation energy, and the rate law of reaction are to be determined.

Concept introduction:

At a given temperature, the concentration ratio of concentration of product to concentration of reactant in a chemical reaction is called rate constant. According to the Arrhenius equation, rate constant depends on temperature.

The amount of energy required for the reaction to form products by the formation of an activated complex is called activation energy.

Half-life: The time required for the concentration of a reactant to decrease to one-half its initial value. This period of time is called the half-life of the reaction, written as t1/2. Thus, the half-life of a reaction is the time required for the reactant concentration to decrease from [A]0 to [A]0/2

The relation between rate constant k and half-life is

k=0.693t1/2

Answer to Problem 135AP

Solution:

a) 0.035min1

b) 110 kJ/mol

c) Rate=ki[ R2 ]

Rate=kp[ M ][ M1 ]

Rate=kt[ M' ][ M" ]

d) A higher rate of propagation step and a lower rate of termination step.

Explanation of Solution

Given information: The initiation step is as follows: R2ki2R. The R species is a radical that reacts with M as follows: R+MM1

The reaction of M1 leads to the propagation of the polymer chain as follows: M1+MkpM2

The propagation terminates when two radicals combine as follows: M'+M"ktM'M". The initiator frequently used in the polymerization of ethylene is benzoyl peroxide and the reaction is as follows:

(C6H5COO)22C6H5COO

a) The rate constant (in min1) of the reaction

The relation between the rate constant and half-life is given as follows:

k=0.693t1/2

The value of t1/2

is given as 19.8 min. By substituting this value in the above equation, the rate constant is determined as follows:

k=0.693t1/2=0.69319.8min=0.035min1

The rate constant for the reaction is 0.035min1.

b) The activation energy (in kJ/mol) for the decomposition of benzoyl peroxide.

The half-life of benzoyl peroxide is 7.30 hr or 438 min at 70°C.

The rate constant for the reaction at 70°C is as follows:

k=0.693t1/2=0.693438min=0.00158min1

There are two values of rate constants k1 and k2 at temperatures T1 and T2. According to the Arrhenius equation, the activation energy is calculated as follows:

lnk1k2=EaR(T1T2T1T2)

Here, k1k2 is the rate constant, R is the gas constant, Ea is the activation energy, and T1 and T2 are the absolute temperatures.

Substitute the values k1k2, R, and T1 and T2 in the above equation as follows:

ln(0.0350min10.00158)=Ea(8.314 J/mol.K)((373343)K(373)(343)K)ln22.1518=Ea(8.314EJ/mol.K)(30127939K)Ea=(3.0979)(8.314 J/mol)(127939)30

Ea=3295189.28430=109838.64 J/mol=1.10×105 J/mol

Ea=110 kJ/mol

The activation energy for the reaction is 110kJ/mol.

c) The rate laws to be written for elementary steps in the preceding polymerization process and identify the reactant, product, and intermediates.

The rate law for the initiation step is as follows:

Rate=ki[ R2 ]

The rate law for the propagation step is as follows:

Rate=kp=[ M ][ M1 ]

The rate law for the propagation step is as follows:

Rate=kt[ M' ][ M" ]

The ethylene monomers are the reactant molecules, and polyethylene is a product in the reaction mechanism. The intermediates are formed in the early elementary step and consumed in the next step. So, the intermediates are radicals of R species, M' and M".

d) The condition that favor the growth of long, high-molar-mass polyethylenes.

A higher rate of propagation and a lower rate of termination are favoured when the growth of long polymers take place. In the propagation step, the rate law is dependent on the concentration of monomer. If the concentration of ethylene is increased, the propagation rate also increases.

The concentration of radical fragments M' and M" is low and it can be seen from the rate law of termination, due to which a slower rate of termination takes place. By using a low concentration of initiator (R2), it can be accomplished.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 14 Solutions

CHEMISTRY (CUSTOM F/CHE 111/112)

Ch. 14.2 - Answer questions 14.2.1 through 14.2.4 using the...Ch. 14.2 - Answer questions 14.2.1 through 14.2.4 using the...Ch. 14.2 - 14.2.5 The diagrams represent three experiments in...Ch. 14.3 - Prob. 1PPACh. 14.3 - Practice Problem BUILD For the following general...Ch. 14.3 - Practice Problem CONCEPTUALIZE Three initial-rate...Ch. 14.3 - The first-order decomposition of dinitrogen...Ch. 14.3 - The first-order decomposition of dinitrogen...Ch. 14.3 - 14.3.3 Consider the first-order reaction in which...Ch. 14.3 - Which figure below represents the numbers of...Ch. 14.3 - 14.3.5 Of the plots shown here, ___________...Ch. 14.4 - Practice Problem ATTEMPT The rate constant for the...Ch. 14.4 - Practice Problem BUILD Refer again to the reaction...Ch. 14.4 - Practice Problem CONCEPTUALIZE The diagrams on...Ch. 14.4 - Use the table of data collected for a first-order...Ch. 14.4 - Prob. 2CPCh. 14.4 - Prob. 3CPCh. 14.5 - Practice Problem ATTEMPT Ethyl iodide ( C 2 H 5 I)...Ch. 14.5 - Practice Problem BUILD Use the calculated k from...Ch. 14.5 - Practice Problem CONCEPTUALIZE Use the graph in...Ch. 14.5 - Use the following information to answer questions...Ch. 14.5 - Use the following information to answer questions...Ch. 14.5 - Use the following information to answer questions...Ch. 14.5 - 14.5.4 A plausible mechanism for the reaction: Ch. 14.6 - Practice ProblemATTEMPT Calculate the half-life of...Ch. 14.6 - Practice ProblemBUILD Calculate the rate constant...Ch. 14.6 - Practice Problem CONCEPTUALIZE The diagrams show a...Ch. 14.7 - Practice Problem ATTEMPT The reaction is second...Ch. 14.7 - Practice Problem BUILD Determine the initial...Ch. 14.7 - Practice ProblemCONCEPTUALIZE The diagrams below...Ch. 14.8 - Practice ProblemATTEMPT The second-order rate...Ch. 14.8 - Practice Problem BUILD Use the graph to determine...Ch. 14.8 - Prob. 1PPCCh. 14.9 - Practice ProblemATTEMPT Use the data in the...Ch. 14.9 - Practice ProblemBUILD Based on the data shown in...Ch. 14.9 - Practice Problem CONCEPTUALIZE According to the...Ch. 14.10 - Practice ProblemATTEMPT Calculate the rate...Ch. 14.10 - Practice ProblemBUILD Calculate the rate constant...Ch. 14.10 - Practice ProblemCONCEPTUALIZE According to the...Ch. 14.11 - Practice Problem ATTEMPT The reaction between and...Ch. 14.11 - Practice ProblemBUILD Propose a plausible...Ch. 14.11 - Practice Problem CONCEPTUALIZE How many steps are...Ch. 14.12 - Practice Problem ATTEMPT Show that the following...Ch. 14.12 - Practice Problem BUILD The reaction proceeds via...Ch. 14.12 - Practice Problem CONCEPTUALIZE The reaction of is...Ch. 14 - Prob. 1KSPCh. 14 - Prob. 2KSPCh. 14 - Prob. 3KSPCh. 14 - Prob. 4KSPCh. 14 - 14.1 What is meant by the rate of a chemical...Ch. 14 - Distinguish between average rate and instantaneous...Ch. 14 - What are the advantages of measuring the initial...Ch. 14 - Identify two reactions that are very slow (take...Ch. 14 - Write the reaction rate expressions for the...Ch. 14 - Write the reaction rate expressions for the...Ch. 14 - Consider the reaction: 2NO ( g ) + O 2 ( g ) → 2NO...Ch. 14 - 14.8 Consider the reaction: Suppose that at a...Ch. 14 - 14.9 Explain what is meant by the rate law of a...Ch. 14 - Prob. 10QPCh. 14 - What are the units for the rate constants of...Ch. 14 - 14.12 Consider the zeroth-order reaction: a ...Ch. 14 - 14.13 The rate constant of a first-order reaction...Ch. 14 - Identify two reactions that are very slow (take...Ch. 14 - The rate law for the reaction: N H 4 + ( a q )+N O...Ch. 14 - Use the data in Table 14.2 to calculate the rate...Ch. 14 - 14.17 Consider the reaction: From the following...Ch. 14 - Consider the reaction: X + Y → Z From the...Ch. 14 - Determine the overall orders of the reactions to...Ch. 14 - 14.20 Consider the reaction: The rate of the...Ch. 14 - Cyclobutane decomposes to ethylene according to...Ch. 14 - The following gas-phase reaction was studied at...Ch. 14 - Write an equation relating the concentration of a...Ch. 14 - 14.24 Define half-life. Write the equation...Ch. 14 - Prob. 25QPCh. 14 - 14.26 For a first-order reaction, how long will it...Ch. 14 - What is the half-life of a compound if 75 percent...Ch. 14 - 14.28 The thermal decomposition of phosphine into...Ch. 14 - The rate constant for the second-order reaction:...Ch. 14 - The rate constant for the second-order reaction:...Ch. 14 - 14.31 The second-order rate constant for the...Ch. 14 - Prob. 32QPCh. 14 - 14.33 The reaction shown here follows first-order...Ch. 14 - 14 34 Define activation energy. What role does...Ch. 14 - Prob. 35QPCh. 14 - Prob. 36QPCh. 14 - The burning of methane in oxygen is a highly...Ch. 14 - Sketch a potential-energy versus reaction progress...Ch. 14 - The reaction H+H 2 → H 2 +H has been studied for...Ch. 14 - Over the range of about ±3°C from normal body...Ch. 14 - For the reaction: NO ( g ) + O 3 ( g ) → NO 2 ( g...Ch. 14 - The rate constant of a first-order reaction is 4...Ch. 14 - The rate constants of some reactions double with...Ch. 14 - 14.44 The rate at which tree crickets chirp is ...Ch. 14 - The rate of bacterial hydrolysis of fish muscle is...Ch. 14 - Prob. 46QPCh. 14 - Given the same reactant concentrations, the...Ch. 14 - 14.48 Variation of the rate constant with...Ch. 14 - 14.49 Diagram A describes the initial state of...Ch. 14 - 14 50 What do we mean by the mechanism of a...Ch. 14 - 14.51 What is an elementary step? What is the...Ch. 14 - 14.52 Classify the following elementary reactions...Ch. 14 - Reactions can be classified as unimolecular,...Ch. 14 - Determine the molecularity, and write the rate law...Ch. 14 - 14.55 What is the rate-determining step of a...Ch. 14 - 14.56 The equation for the combustion of ethane ...Ch. 14 - Specify which of the following species cannot be...Ch. 14 - Classify each of the following elementary steps as...Ch. 14 - 14.59 The rate law for the reaction: is given by...Ch. 14 - For the reaction x 2 + y + z → x y + x z , it is...Ch. 14 - The rate law for the reaction: 2H 2 ( g ) + 2NO (...Ch. 14 - 14.62 The rate law for the decomposition of ozone...Ch. 14 - 14.63 How does a catalyst increase the rate of a...Ch. 14 - 14.64 What are the characteristics of a...Ch. 14 - A certain reaction is known to proceed slowly at...Ch. 14 - Most reactions, including enzyme-catalyzed...Ch. 14 - 14.67 Are enzyme-catalyzed reactions examples of...Ch. 14 - The concentrations of enzymes in cells are usually...Ch. 14 - When fruits such as apples and pears are cut. the...Ch. 14 - The first-order rate constant for the dehydration...Ch. 14 - Which two potential-energy profiles represent the...Ch. 14 - Consider the following mechanism for the...Ch. 14 - List four factors that influence the rate of a...Ch. 14 - 14.71 Suggest experimental means by which the...Ch. 14 - 14.75 “The rate constant for the reaction: is .”...Ch. 14 - Prob. 76APCh. 14 - The following diagrams represent the progress of...Ch. 14 - The following diagrams show the progress of the...Ch. 14 - Prob. 79APCh. 14 - Prob. 80APCh. 14 - 14.81 When methyl phosphate is heated in acid...Ch. 14 - The rate of the reaction: CH 3 COOC 2 H 5 ( a q )...Ch. 14 - Explain why most metals used in catalysis are...Ch. 14 - Prob. 84APCh. 14 - The bromination of acetone is acid-catalyzed: CH 3...Ch. 14 - The decomposition of N 2 O to N 2 and O 2 is a...Ch. 14 - 14.87 The reaction proceeds slowly in aqueous...Ch. 14 - Prob. 88APCh. 14 - The integrated rate law for the zeroth-order...Ch. 14 - 14.90 A flask contains a mixture of compounds A...Ch. 14 - Prob. 91APCh. 14 - 14.92 The rate law for the reaction . Which of the...Ch. 14 - 14.93 The reaction of to form 2EG is exothermic,...Ch. 14 - 14.94 The activation energy for the decomposition...Ch. 14 - Prob. 95APCh. 14 - 14.96 When 6 g of granulated Zn is added to a...Ch. 14 - Prob. 97APCh. 14 - 14.98 A certain first-order reaction is 35.5...Ch. 14 - 14.99 The decomposition of dinitrogen pentoxide...Ch. 14 - 14.100 The thermal decomposition of obeys...Ch. 14 - 14.101 When a mixture of methane and bromine is...Ch. 14 - 14.102 The rate of the reaction between to form...Ch. 14 - The rate constant for the gaseous reaction: H 2 (...Ch. 14 - A gas mixture containing CH 3 fragments. C 2 H 6...Ch. 14 - Consider the following elementary step: X + 2Y →...Ch. 14 - 14.106 The following scheme in which A is...Ch. 14 - 14.107 (a) Consider two reactions, A and B. If the...Ch. 14 - The rate law for the following reaction: CO ( g )...Ch. 14 - Consider the following elementary steps for a...Ch. 14 - Prob. 110APCh. 14 - Consider the following potential-energy profile...Ch. 14 - The rate of a reaction was followed by the...Ch. 14 - 14.113 The first-order rate constant for the...Ch. 14 - 14.114 Many reactions involving heterogeneous...Ch. 14 - Thallium(I) is oxidized by cerium(IV) as follows:...Ch. 14 - The activation energy for the reaction: N 2 O ( g...Ch. 14 - Δ H ° for the reaction in Problem 14.116 is -164...Ch. 14 - 14.118 At a certain elevated temperature, ammonia...Ch. 14 - 14.119 The following expression shows the...Ch. 14 - In a certain industrial process involving a...Ch. 14 - Strontium-90, a radioactive isotope, is a major...Ch. 14 - Prob. 122APCh. 14 - Prob. 123APCh. 14 - A factory that specializes in the refinement of...Ch. 14 - 14.125 When the concentration of A in the reaction...Ch. 14 - 14.126 The activity of a radioactive sample is the...Ch. 14 - Prob. 127APCh. 14 - Prob. 128APCh. 14 - Prob. 129APCh. 14 - Prob. 130APCh. 14 - Prob. 131APCh. 14 - Prob. 132APCh. 14 - Prob. 133APCh. 14 - 14.134 At a certain elevated temperature, ammonia...Ch. 14 - Polyethylene is used in many items, including...Ch. 14 - In recent years, ozone in the stratosphere has...Ch. 14 - Metastron, an aqueous solution of 89 SrCl 2 , is a...Ch. 14 - Metastron, an aqueous solution of 89 SrCl 2 , is a...Ch. 14 - Metastron, an aqueous solution of 89 SrCl 2 , is a...Ch. 14 - Metastron, an aqueous solution of 89 SrCl 2 , is a...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY