EBK CHEMISTRY
EBK CHEMISTRY
8th Edition
ISBN: 9780135216972
Author: Robinson
Publisher: PEARSON CO
Question
Book Icon
Chapter 14, Problem 14.118SP
Interpretation Introduction

(a)

Interpretation:

The overall reaction needs to be proposed.

Concept introduction:

Reaction mechanism is step by step arrangement of elementary reactions by which overall chemical change arise. A chemical mechanism is a theoretical estimation that tries to depict in detail what happens at each phase of an overall chemical reaction.

Interpretation Introduction

(b)

Interpretation:

The role of Cl in given reaction mechanism needs to be explained.

Concept introduction:

A catalyst is shows up as a reactant first, and afterward as a product.

Intermediates are create in elementary step and consumed in later step of reaction mechanism. It does not take part in overall reaction.

Interpretation Introduction

(c)

Interpretation:

Whether in the given reaction mechanism ClO is catalyst or a reaction intermediate.

Concept introduction:

A catalyst is shows up as a reactant first, and afterward as a product.

Intermediates are create in one step and consumed in later step of reaction mechanism. Slowest step in the mechanism is rate determining step.

Interpretation Introduction

(d)

Interpretation:

A catalyst needs to be distinguished from an intermediate.

Concept introduction:

A catalyst is shows up as a reactant first, and afterward as a product.

Intermediates are create in elementary step and consumed in later step of reaction mechanism. It does not take part in overall reaction.

Blurred answer
Students have asked these similar questions
The formation of dinitrogen pentoxide is described by the following chemical equation: 2NO, (g) + O; (g) → 0, (g) + N,O5 (g) Suppose a two-step mechanism is proposed for this reaction, beginning with this elementary reaction: NO2 (g) + 03 (g) NO; (g) + 0, Suppose also that the second step of the mechanism should be bimolecular. Suggest a reasonable second step. That is, write the balanced chemical equation of a bimolecular elementary reaction that would complete the proposed mechanism.
The formation of nitrosyl chloride is described by the following chemical equation: 2NO (g) + Cl₂ (g) → 2NOCI (g) Suppose a two-step mechanism is proposed for this reaction, beginning with this elementary reaction: NO (g) +Cl₂ (g) NOCI₂ (g) Suppose also that the second step of the mechanism should be bimolecular. Suggest a reasonable second step. That is, write the balanced chemical equation of a bimolecular elementary reaction that would complete the proposed mechanism. 11 × Ś
Assume that the formation of nitrogen dioxide: 2NO(g) + O2(g) 2NO2(g)   is an elementary reaction. (a) Write the rate law for this reaction. (b) A sample of air at a certain temperature is contaminated with 2.0 ppm of NO by volume. Under these conditions, can the rate law be simplified? If so, write the simplified rate law. (c) Under the conditions described in part (b), the half-life of the reaction has been estimated to be 6.4 × 103 min. What would the half-life be if the initial concentration of NO were 10 ppm?

Chapter 14 Solutions

EBK CHEMISTRY

Ch. 14 - Prob. 14.11PCh. 14 - Prob. 14.12ACh. 14 - Prob. 14.13PCh. 14 - Prob. 14.14ACh. 14 - Consider the first-order decomposition of H2O2...Ch. 14 - Prob. 14.16ACh. 14 - Hydrogen iodide gas decomposes at 410 °C:...Ch. 14 - Prob. 14.18ACh. 14 - Thereaction NO2(g)+CO(g)NO(g)+CO2(g) occurs in one...Ch. 14 - Prob. 14.20ACh. 14 - Prob. 14.21PCh. 14 - Apply 13.22 The rate of the reaction...Ch. 14 - Prob. 14.23PCh. 14 - Prob. 14.24ACh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26ACh. 14 - Prob. 14.27PCh. 14 - Prob. 14.28ACh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.30ACh. 14 - Prob. 14.31PCh. 14 - Draw a potential energy diagram for the mechanism...Ch. 14 - Prob. 14.33PCh. 14 - Given the mechanism for an enzyme-catalyzed...Ch. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - At high substrate concentrations, the rate...Ch. 14 - Chymotrypsin is a digestive enzyme component of...Ch. 14 - Prob. 14.39CPCh. 14 - Prob. 14.40CPCh. 14 - Prob. 14.41CPCh. 14 - Prob. 14.42CPCh. 14 - Prob. 14.43CPCh. 14 - Prob. 14.44CPCh. 14 - Prob. 14.45CPCh. 14 - Prob. 14.46CPCh. 14 - Prob. 14.47CPCh. 14 - Prob. 14.48CPCh. 14 - Prob. 14.49CPCh. 14 - Use the data in Table 13.1 to calculate the...Ch. 14 - 13.50 Use the data in Table 13.1 to calculate the...Ch. 14 - Prob. 14.52SPCh. 14 - Prob. 14.53SPCh. 14 - From the plot of concentrationtime data in Figure...Ch. 14 - Prob. 14.55SPCh. 14 - Prob. 14.56SPCh. 14 - Prob. 14.57SPCh. 14 - Prob. 14.58SPCh. 14 - Prob. 14.59SPCh. 14 - Prob. 14.60SPCh. 14 - Prob. 14.61SPCh. 14 - Prob. 14.62SPCh. 14 - Prob. 14.63SPCh. 14 - Prob. 14.64SPCh. 14 - Prob. 14.65SPCh. 14 - Prob. 14.66SPCh. 14 - Prob. 14.67SPCh. 14 - The oxidation of iodide ion by hydrogen peroxide...Ch. 14 - Prob. 14.69SPCh. 14 - At 500 °C, cyclopropane (C3H6) rearranges to...Ch. 14 - The rearrangement of methyl isonitrile (CH3NC) to...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.73SPCh. 14 - Prob. 14.74SPCh. 14 - Hydrogen iodide decomposes slowly to H2 and I2 at...Ch. 14 - What is the half-life (in minutes) of the reaction...Ch. 14 - Prob. 14.77SPCh. 14 - At 25 °C, the half-life of a certain first-order...Ch. 14 - The decomposition of N2O5 is a first-order...Ch. 14 - Prob. 14.80SPCh. 14 - Prob. 14.81SPCh. 14 - Prob. 14.82SPCh. 14 - Consider the following concentration-time data for...Ch. 14 - Trans-cycloheptene (C7H12), a strained cyclic...Ch. 14 - Thelight-stimulatedconversionof 11-cis-retinalto...Ch. 14 - Why don't all collisions between reactant...Ch. 14 - Prob. 14.87SPCh. 14 - Prob. 14.88SPCh. 14 - Prob. 14.89SPCh. 14 - The values of Ea=183 kJ/mol and E=9 kJ/mol have...Ch. 14 - Prob. 14.91SPCh. 14 - Consider three reactions with different values of...Ch. 14 - Prob. 14.93SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.95SPCh. 14 - Prob. 14.96SPCh. 14 - Prob. 14.97SPCh. 14 - If the rate of a reaction increases by a factor of...Ch. 14 - Prob. 14.99SPCh. 14 - Prob. 14.100SPCh. 14 - Rate constants for the reaction...Ch. 14 - Prob. 14.102SPCh. 14 - Poly(ethylene terephthalate) is a synthetic...Ch. 14 - Prob. 14.104SPCh. 14 - Prob. 14.105SPCh. 14 - Prob. 14.106SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.108SPCh. 14 - Prob. 14.109SPCh. 14 - The thermal decomposition of nitryl chloride,...Ch. 14 - The substitution reactions of molybdenum...Ch. 14 - The reaction 2NO2(g)+F2(g)2NO2F(g) has a second...Ch. 14 - The decomposition of ozone in the upper atmosphere...Ch. 14 - Prob. 14.114SPCh. 14 - The following mechanism has been proposed for the...Ch. 14 - Prob. 14.116SPCh. 14 - Prob. 14.117SPCh. 14 - Prob. 14.118SPCh. 14 - Prob. 14.119SPCh. 14 - Prob. 14.120SPCh. 14 - Prob. 14.121SPCh. 14 - Prob. 14.122SPCh. 14 - Prob. 14.123SPCh. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) . The...Ch. 14 - Concentration-time data for the conversion of A...Ch. 14 - Prob. 14.126MPCh. 14 - Prob. 14.127MPCh. 14 - Prob. 14.128MPCh. 14 - Prob. 14.129MPCh. 14 - Prob. 14.130MPCh. 14 - Prob. 14.131MPCh. 14 - Prob. 14.132MPCh. 14 - Prob. 14.133MPCh. 14 - Prob. 14.134MPCh. 14 - Polytetrafluoroethylene (Teflon) decomposes when...Ch. 14 - The reaction A is first order in the reactant A...Ch. 14 - Prob. 14.137MPCh. 14 - A 1.50 L sample of gaseous HI having a density of...Ch. 14 - The rate constant for the decomposition of gaseous...Ch. 14 - The rate constant for the first-order...Ch. 14 - Prob. 14.141MPCh. 14 - Prob. 14.142MPCh. 14 - At 791 K and relatively low pressures, the...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning