GENETIC ANALYSIS: INTEGRATED - ACCESS
GENETIC ANALYSIS: INTEGRATED - ACCESS
3rd Edition
ISBN: 9780135349298
Author: Sanders
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 14, Problem 16P

In humans, Duchenne’s muscular dystrophy is caused by a mutation in the dystrophin gene, which resides on the X chromosome. How would you create a mouse model of this genetic disease?

Blurred answer
Students have asked these similar questions
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene that encodes dystrophin, a large protein that plays an important role in the development of normal muscle fibers. The Dystrophin gene is immense, spanning 2.5 million base pairs, and includes 79 exons and 78 introns. Many of the mutations that cause DMD produce premature stop codons, which bring protein synthesis to a halt, resulting in a greatly shortened and nonfunctional form of dystrophin. Some geneticists have proposed treating DMD patients by introducing small RNA molecules that cause the spliceosome to skip the exon containing the stop codon (A. Goyenvalle et al., 2004. Science 306:1796–1799). The introduction of the small RNAs will produce a protein that is somewhat shortened because an exon is skipped and some amino acids are missing, but it may still result in a protein that has some function. The small RNAs, antisense RNAs, used for exon skipping are complementary to…
Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disease caused by mutations in the gene that encodes dystrophin, a large protein that plays an important role in the development of normal muscle fibers. The dystrophin gene is immense, spanning 2.5 million base pairs, and includes 79 exons and 78 introns. Many of the mutations that cause DMD produce premature stop codons, which bring protein synthesis to a halt, resulting in a greatly shortened and nonfunctionalform of dystrophin. Some geneticists have proposed treating DMD patients by causing the spliceosome to skip the exon containing the stop codon. Exon skipping would produce a protein that is somewhat shortened (because an exon is skipped and some amino acids are missing), but might still result in a protein that had some function (A. Goyenvalle et al. 2004. Science 306:1796–1799). Propose a possible mechanism to bring about exon skipping for the treatment of DMD.
The phenotype of a heterozygous mouse (Aa) is agouti.  The agouti banding pattern is due to altered expression of the agouti gene.  Which of the following statement is false? a) Expression of the agouti gene inhibits the production of eumelanin. b) Evidence suggests that the agouti gene is only expressed in tissues associated with fur production. c) Epigenetic markers silence the agouti gene resulting in dark pigmentation at the tip and root of the hair. d) All of the above

Chapter 14 Solutions

GENETIC ANALYSIS: INTEGRATED - ACCESS

Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Embryology | Fertilization, Cleavage, Blastulation; Author: Ninja Nerd;https://www.youtube.com/watch?v=8-KF0rnhKTU;License: Standard YouTube License, CC-BY