Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Videos

Textbook Question
Book Icon
Chapter 14.12, Problem 1KCP

Describe the classic model for electrical conduction in metals.

Expert Solution & Answer
Check Mark
To determine

The description of the classic model for electrical conduction in metals.

Explanation of Solution

In metals, the arrangement of the atoms in the crystal structure is kept together with the metallic bonds that make it possible the movement of valance electrons. In the classic model of the electrical conductivity of a metal, the valance electrons present at the outermost layer are assumed to freely displace between the cores of positive ions in the lattice. Having some kinetic energy at the room temperature, the cores of positive ions vibrate in their lattice positions; however, with the rise in temperature the intensity of the vibrations rise and interchange of energies between electrons and the cores occurs. The electrons vibrate without any electric potential and randomly moves producing no current flow. But when a potential difference is applied, the electrons begin to travel uniformly by producing electric currents.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What do you mean by 'Finite Elements in FEM". Explain in detail the basic concept involved in FEM.
what is a metal and what characteristics does it have in sense of electrical conductivity
Provide a concise explanation on how materials can exhibit high thermal conductivity but have low electrical conductivity.

Chapter 14 Solutions

Foundations of Materials Science and Engineering

Ch. 14.12 - Prob. 11KCPCh. 14.12 - Prob. 12KCPCh. 14.12 - Prob. 13KCPCh. 14.12 - Prob. 14KCPCh. 14.12 - Prob. 15KCPCh. 14.12 - Prob. 16KCPCh. 14.12 - Prob. 17KCPCh. 14.12 - Prob. 18KCPCh. 14.12 - Prob. 19KCPCh. 14.12 - Prob. 20KCPCh. 14.12 - Prob. 21KCPCh. 14.12 - Prob. 22KCPCh. 14.12 - Prob. 23KCPCh. 14.12 - Prob. 24KCPCh. 14.12 - Prob. 25KCPCh. 14.12 - Prob. 26KCPCh. 14.12 - Prob. 27KCPCh. 14.12 - Describe the movement of the majority and minority...Ch. 14.12 - Prob. 29KCPCh. 14.12 - Prob. 30KCPCh. 14.12 - What is a zener diode? How does this device...Ch. 14.12 - Prob. 32KCPCh. 14.12 - Prob. 33KCPCh. 14.12 - Prob. 34KCPCh. 14.12 - Prob. 35KCPCh. 14.12 - Describe how the planar bipolar transistor can...Ch. 14.12 - Prob. 37KCPCh. 14.12 - Prob. 38KCPCh. 14.12 - Prob. 39KCPCh. 14.12 - Prob. 40KCPCh. 14.12 - Prob. 41KCPCh. 14.12 - Prob. 42KCPCh. 14.12 - Prob. 43KCPCh. 14.12 - Prob. 44KCPCh. 14.12 - Prob. 45KCPCh. 14.12 - Prob. 46KCPCh. 14.12 - Prob. 47KCPCh. 14.12 - Prob. 48KCPCh. 14.12 - Prob. 49KCPCh. 14.12 - Prob. 50KCPCh. 14.12 - Prob. 51KCPCh. 14.12 - Prob. 52KCPCh. 14.12 - Prob. 53KCPCh. 14.12 - What are ferroelectric domains? How can they be...Ch. 14.12 - Prob. 55KCPCh. 14.12 - Prob. 56KCPCh. 14.12 - What are the PZT piezoelectric materials? In what...Ch. 14.12 - Prob. 58AAPCh. 14.12 - Prob. 59AAPCh. 14.12 - Prob. 60AAPCh. 14.12 - Prob. 61AAPCh. 14.12 - Prob. 62AAPCh. 14.12 - Prob. 63AAPCh. 14.12 - Prob. 64AAPCh. 14.12 - Prob. 65AAPCh. 14.12 - Prob. 66AAPCh. 14.12 - Prob. 67AAPCh. 14.12 - Prob. 68AAPCh. 14.12 - Prob. 69AAPCh. 14.12 - Prob. 70AAPCh. 14.12 - Phosphorus is added to make an n-type silicon...Ch. 14.12 - Prob. 72AAPCh. 14.12 - A silicon wafer is doped with 2.50 1016 boron...Ch. 14.12 - A silicon wafer is doped with 2.50 1015...Ch. 14.12 - Prob. 75AAPCh. 14.12 - Prob. 76AAPCh. 14.12 - Prob. 77AAPCh. 14.12 - What fabrication techniques are used to encourage...Ch. 14.12 - Prob. 79AAPCh. 14.12 - Prob. 80AAPCh. 14.12 - Calculate the intrinsic electrical conductivity of...Ch. 14.12 - Prob. 82AAPCh. 14.12 - Prob. 83AAPCh. 14.12 - Prob. 85AAPCh. 14.12 - Prob. 86AAPCh. 14.12 - Prob. 87AAPCh. 14.12 - Prob. 88AAPCh. 14.12 - Prob. 89AAPCh. 14.12 - Prob. 90AAPCh. 14.12 - Prob. 91AAPCh. 14.12 - Prob. 92SEPCh. 14.12 - Prob. 93SEPCh. 14.12 - Design a p-type semiconductor based on Si that...Ch. 14.12 - Prob. 95SEPCh. 14.12 - Prob. 96SEPCh. 14.12 - Prob. 97SEPCh. 14.12 - Prob. 98SEPCh. 14.12 - Prob. 99SEPCh. 14.12 - Prob. 100SEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Lesson 2: Thermodynamic Properties; Author: The Thermo Sage;https://www.youtube.com/watch?v=qA-xwgliPAc;License: Standard Youtube License