UNIVERSE LL W/SAPLINGPLUS MULTI SEMESTER
UNIVERSE LL W/SAPLINGPLUS MULTI SEMESTER
11th Edition
ISBN: 9781319278670
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 16, Problem 11Q

(a)

To determine

An estimate for the amount of hydrogen (in kilograms) consumed by the Sun over the past 4.56 billion years. Also, find the amount of the Sun’s mass which is lost as a result of this. Consider that the luminosity of the Sun remains constant.

(b)

To determine

Whether the result obtained in the previous subpart is an overestimate or an underestimate, considering that when the formation of the Sun occurred, its luminosity was about 70% of its present value.

Blurred answer
Students have asked these similar questions
Assume that the core of the Sun has one-eighth of the Sun’s mass and is compressed within a sphere whose radius is one-fourth of the solar radius.Assume further that the composition of the core is 31% hydrogen by mass and that essentially all the Sun’s energy is generated there. If the Sun continues to burn hydrogen at the current rate of 6.33E11 kg/s, how long, in years, will it be before the hydrogen is entirely consumed? Mass of the Sun is 2.0x1030 kg.
Assume that the core of the Sun has one-eighth of the Sun’s mass and is compressed within a sphere whose radius is one-fourth of the solar radius.Assume further that the composition of the core is 35% hydrogen by mass and that essentially all the Sun’s energy is generated there. If the Sun continues to burn hydrogen at the current rate of 6.2 *1011 kg/s, how long will it be before the hydrogen is entirely consumed? The Sun’s mass is 2.0 * 1030 kg.
if the nuclear fusion reaction of converting 4 H → He occurs at anefficiency of 0.7%, and that mass is converted into energy accordingto the equation E = mc2, then estimate the Main Sequence lifetime of the Sun (spectral type G2)in years if the Sun (⊙) has a surface luminosity L⊙ = 3.839×1033erg. Assume the Sun’s core (10% of the total mass) is convertedfrom H into He. The Sun’s mass is M⊙ = 1.9891 × 1033 g

Chapter 16 Solutions

UNIVERSE LL W/SAPLINGPLUS MULTI SEMESTER

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage