Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 16.2, Problem 2E
Program Plan Intro

To give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, n being the number of items, W being the maximum weight of items that thief selects.

Blurred answer
Students have asked these similar questions
Apply the bottom-up dynamic programming algorithm to the followinginstance of the knapsack problem: Item Weight Value 1 3 $25 2 2 $30 3 1 $15 4 4 $40 5 5 $50 Capacity W = 8.
Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies.   Design a bottom-up (non-recursive) O(nk)-time algorithm that makes change for any set of k different coin denominations. Write down the pseudocode and analyze its running time. Argue why your choice of the array and the order in which you fill in the values is the correct one. Notice how it is a lot easier to analyze the running time of…
Consider the problem of making change for n cents using the fewest number of coins. Assume that we live in a country where coins come in k dierent denominations c1, c2, . . . , ck, such that the coin values are positive integers, k ≥ 1, and c1 = 1, i.e., there are pennies, so there is a solution for every value of n. For example, in case of the US coins, k = 4, c1 = 1, c2 = 5, c3 = 10, c4 = 25, i.e., there are pennies, nickels, dimes, and quarters. To give optimal change in the US for n cents, it is sufficient to pick as many quarters as possible, then as many dimes as possible, then as many nickels as possible, and nally give the rest in pennies. Design a bottom-up (non-recursive) O(nk)-time algorithm that makes change for any set of k different coin denominations. Write down the pseudocode and analyze its running time. Argue why your choice of the array and the order in which you ll in the values is the correct one.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole