(a)
Interpretation:
By using Stirling’s approximation, the value of
Concept introduction:
Combination formula is a possible way of grouping of distinguishable objects into various subsystems. The equation for combination formula is as follows:
Where,
•
If the value of
(b)
Interpretation:
By using Stirling’s approximation,
Concept introduction:
Combination formula is a possible way of grouping of distinguishable objects into various subsystems. The equation for combination formula is as follows:
Where,
•
If the value of
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
EBK PHYSICAL CHEMISTRY
- (b) A system with chemical potential u = 12.5 meV contains identical particles each with integer spin and has a single quantum state at energy E, = 0 meV. The temperature of the system is fixed at 290 K. To three significant figures, what is the ratio Pg/P1, where P is the probability of finding a single particle in the state Eo, and P3 is the probability of finding 3 particles in this state? P3/P (Input your answer as a number.)arrow_forwardEnrico Fermi (1901–1954) was a famous physicist who liked to pose what are now known as Fermi problems, in which several assumptions are made in order to make a seemingly impossible estimate. Probably the most famous example is the estimate of the number of piano tuners in Chicago using the approximate population of the city and assumptions about how many households have pianos, how often pianos need tuning, and how many hours a given tuner works in a year. Another famous example of a Fermi problem is "Caesar's last breath," which estimates that you, right now, are breathing some of the molecules exhaled by Julius Caesar just before he died. The assumptions made are: 1. The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere. 2. The atmosphere is 50 km thick, has an average temperature of 15 °C, and an average pressure of 0.20 atm. 3. The radius of the Earth is about 6400 km. 4. The volume of a single human breath is roughly 500 mL. Perform the…arrow_forward(a) Palladium (Pd) is an element with properties similar to those of platinum. It is useful in eliminating harmful emission produce by internal combustion engines. Two students were given identical cylindrical “palladium” bars with the following data: Mass = 96.03 g; Length = 10.7 cm; Diameter = 9.82 mm; Density = 12.02 gcm-3 Show the calculations that Student K and S would do if: Student K was asked to determine whether his bar was made of pure palladium. Student S was asked to calculate the grams of ethyl alcohol (d = 0.789 gcm-3) his bar would displace.arrow_forward
- Consider the molecules: CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2. Let’s assume that the 10 electrons that make up the double bonds can exist everywhere along the carbon chains. The electrons can then be considered as particles in a box; the ends of the molecule correspond to the boundaries of the box with a finite or zero potential energy inside. In this “molecular box”, 2 electrons can occupy an energy level. What are quantum states that the electrons from this molecule can occupy in the ground state? Note that the length of a C-C bond is about 1.54A and the length of a C=C bond is 1.34A to allow you to estimate the length of the “molecular box”arrow_forward5) Richard Feynman called the Euler relation the most remarkable formula in mathematics. Use the Euler relation to give the value of the following quantities. eio=1 ein/2_ ein = ei2π = (Hix = (rcosx = i sin x)arrow_forwardFor the flows shown in Figure P4.5, give reasons why Bernoulli’s equation can or cannot be used between points: (a) 1 and 2; (b) 3 and 4; (c) 5 and 6; (d) 7 and 8; (e) 8 and 9; (f) 9 and 10.arrow_forward
- look at the picturearrow_forwardFor each of the following processes, does the potential energyof the object(s) increase or decrease? (a) The distancebetween two oppositely charged particles is increased.(b) Water is pumped from ground level to the reservoir of awater tower 30 m above the ground. (c) The bond in a chlorinemolecule, Cl2, is broken to form two chlorine atoms.arrow_forwardThe Weibull distribution is widely used in statistical problems relating to aging of solid insulating materials subjected to aging and stress. Use this distribution as a model for time (in hours) to failure of solid insulating specimens subjected to AC voltage. The values of the parameters depend on the voltage and temperature; suppose ? = 2.2 and ? = 220. (a) What is the probability that a specimen's lifetime is at most 250? Less than 250? More than 300? (Round your answers to five decimal places.) at most 250 less than 250more than 300 (b) What is the probability that a specimen's lifetime is between 100 and 250? (Round your answer to four decimal places.) (c) What value (in hr) is such that exactly 50% of all specimens have lifetimes exceeding that value? (Round your answer to three decimal places.) hrarrow_forward
- Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction ψn. (a) Without evaluating any integrals, explain why ⟨x⟩ = L/2. (b) Without evaluating any integrals, explain why ⟨px⟩ = 0. (c) Derive an expression for ⟨x2⟩ (the necessary integrals will be found in the Resource section). (d) For a particle in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why <p2x> = n2h2/4L2.arrow_forward3. (a) Estimate the fractional change in the volume of Earth's oceans due to an average temperature change of 1°C. (b) Use the fact that the average depth of the ocean is 4.00x10^3 m to estimate the change in depth. Note that βwater=2.07x10^-4 (°C) ^-1.arrow_forwardAn electron is accelerated through an electric potential to a kinetic energy of 2.24 × 10-15 J.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning