Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
Question
Book Icon
Chapter 17, Problem 9E

(a)

To determine

Sketch y3(t) and y5(t) for the periodic waveform g(t) shown in Figure 17.29.

(a)

Expert Solution
Check Mark

Answer to Problem 9E

The plot y3(t) and y5(t) for the periodic waveform g(t) is sketched as shown in Figure 1.

Explanation of Solution

Given data:

Refer to Figure 17.29 in the textbook.

Formula used:

Write the general expression for Fourier series expansion.

f(t)=a0+n=1(ancosnω0t+bnsinnω0t)        (1)

Write the general expression for Fourier series coefficient a0.

a0=1T0Tf(t)dt        (2)

Write the general expression for Fourier series coefficient an.

an=2T0Tf(t)cosnω0tdt        (3)

Write the general expression for Fourier series coefficient bn.

bn=2T0Tf(t)sinnω0tdt        (4)

Write the expression to calculate the fundamental angular frequency.

ω0=2πT=2πf0        (5)

Here,

T is the period of the function.

Calculation:s

In the given Figure 17.29, the time period is T=4.

The function v(t) for the given waveform is,

g(t)={2t4,tt12t,1<t12t+4,1<t3        (6)

Substitute 4 for T in equation (5) to find ω0.

ω0=2π4

ω0=π2        (7)

Applying equation (6) in equation (2) to find a0 as follows,

a0=1404f(t)dt=14[11(2t)dt+13(42t)dt]=14[2[t22]11+[4t2t22]13]=14[2[(1)22(1)22][(4(3)2(3)22)(4(1)2(1)22)]]

Simplify the above equation as follows,

a0=14[2[0][(129)(41)]]=14[0(33)]=0

Applying equation (6) in equation (3) to finding the Fourier coefficient an.

an=2404f(t)cosnω0tdt

an=12[11(2t)cosnω0tdt+13(42t)cosnω0tdt]        (8)

Equation (8) is simplified as,

x=11(2t)cosnω0tdt

y=13(42t)cosnω0tdt

Therefore, equation (8) becomes,

an=12[x+y]        (9)

Consider the function,

x=211tcosnω0tdt        (10)

Consider the following integration formula.

abudv=[uv]ababvdu        (11)

Compare the equations (10) and (11) to simplify the equation (10).

u=t dv=cosnω0tdtdu=dt v=sinnω0tnω0

Using the equation (11), the equation (10) can be reduced as,

x=2{[t(sinnω0tnω0)]1111(sinnω0tnω0)dt}=2{[(1)(sinnω0(1)nω0)+(1)(sinnω0(1)nω0)][cosnω0t(nω0)2]11}=2{[(sinnω0nω0)+(sinnω0nω0)][cosnω0(1)(nω0)2cosnω0(1)(nω0)2]}=2{[2sinnω0nω0][cosnω0(nω0)2cosnω0(nω0)2]}

Simplify the above equation as follows,

x=2{[2sinnω0nω0][2cosnω0(nω0)2]}=4sinnω0nω0+4cosnω0(nω0)2

Consider the function,

y=13(42t)cosnω0tdt        (12)

Compare the equations (12) and (11) to simplify the equation (12).

u=42t dv=cosnω0tdtdu=2dt v=sinnω0tnω0

Using the equation (11), the equation (12) can be reduced as,

y=[(42t)(sinnω0tnω0)]13+213(sinnω0tnω0)dt=[(42(3))(sinnω0(3)nω0)(42(1))(sinnω0(1)nω0)]+2[cosnω0t(nω0)2]13=[(46)(sin3nω0nω0)(42)(sinnω0nω0)]+2[cosnω0(3)(nω0)2cosnω0(1)(nω0)2]=[(2)(sin3nω0nω0)(2)(sinnω0nω0)]+2[cos3nω0(nω0)2+cosnω0(nω0)2]=2sin3nω0nω02sinnω0nω02cos3nω0(nω0)2+2cosnω0(nω0)2

Substitute the value of x and y in equation (9) as follows,

an=12[4sinnω0nω0+4cosnω0(nω0)22sin3nω0nω02sinnω0nω02cos3nω0(nω0)2+2cosnω0(nω0)2]=2sinnω0nω0+2cosnω0(nω0)2sin3nω0nω0sinnω0nω0cos3nω0(nω0)2+cosnω0(nω0)2=2sinn(π2)n(π2)+2cosn(π2)(n(π2))2sin3n(π2)n(π2)sinn(π2)n(π2)cos3n(π2)(n(π2))2+cosn(π2)(n(π2))2{ω0=π2}=sinnπnπ2+cosnπ(nπ2)2sin3n(π2)nπ2sinn(π2)nπ2cos3n(π2)(nπ2)2+cosn(π2)(nπ2)2

The above equation becomes,

an=2sinnπnπ+4cosnπ(nπ)22sin3n(π2)nπ2sinn(π2)nπ4cos3n(π2)(nπ)2+4cosn(π2)(nπ)2an=2sinnπnπ+4cosnπ(nπ)2sin3nπnπsinnπnπ2cos3nπ(nπ)2+2cosnπ(nπ)2        (13)

Applying equation (6) in equation (4) to finding the Fourier coefficient bn.

bn=2404f(t)sinnω0tdt

bn=12[11(2t)sinnω0tdt+13(42t)sinnω0tdt]        (14)

Equation (14) is simplified as,

m=11(2t)sinnω0tdt

n=13(42t)sinnω0tdt

Therefore, equation (14) becomes,

bn=12[m+n]        (15)

Consider the function,

m=211tsinnω0tdt        (16)

Consider the following integration formula.

abudv=[uv]ababvdu        (17)

Compare the equations (17) and (16) to simplify the equation (16).

u=t dv=sinnω0tddu=dt v=cosnω0tnω0

Using the equation (17), the equation (16) can be reduced as,

m=2{[t(cosnω0tnω0)]1111(cosnω0tnω0)dt}=2{[(1)(cosnω0(1)nω0)(1)(cosnω0(1)nω0)][sinnω0t(nω0)2]11}=2{[(cosnω0nω0)+(cosnω0nω0)][sinnω0(1)(nω0)2sinnω0(1)(nω0)2]}=[2cosnω0nω0+2cosnω0nω0][2sinnω0(nω0)22sinnω0(nω0)2]

Simplify the above equation as follows,

m=2cosnω0nω0+2cosnω0nω0+2sinnω0(nω0)2+2sinnω0(nω0)2=4sinnω0(nω0)2

Consider the function,

n=13(42t)sinnω0tdt        (18)

Compare the equations (17) and (18) to simplify the equation (18).

u=42t dv=sinnω0tdtdu=2dt v=cosnω0tnω0

Using the equation (17), the equation (18) can be reduced as,

n=[(42t)(cosnω0tnω0)]13213(cosnω0tnω0)dt=[(42(3))(cosnω0(3)nω0)(42(1))(cosnω0(1)nω0)]2[sinnω0t(nω0)2]13=[(2)(cos3nω0nω0)(2)(cosnω0nω0)]2[sinnω0(3)(nω0)2sinnω0(1)(nω0)2]=[(2cos3nω0nω0)+(2cosnω0nω0)]2[sin3nω0(nω0)2sinnω0(nω0)2]=2cos3nω0nω0+2cosnω0nω02sin3nω0(nω0)2+2sinnω0(nω0)2

Substitute the values of m and n in equation (15) as follows,

bn=12[4sinnω0(nω0)2+2cos3nω0nω0+2cosnω0nω02sin3nω0(nω0)2+2sinnω0(nω0)2]=12[4sinn(π2)(n(π2))2+2cos3n(π2)n(π2)+2cosn(π2)n(π2)2sin3n(π2)(n(π2))2+2sinn(π2)(n(π2))2]=12[2sinnπ(n(π2))2+cos3nπn(π2)+cosnπn(π2)sin3nπ(n(π2))2+sinnπ(n(π2))2]=sinnπ(nπ)24+cos3nπnπ+cosnπnπsin3nπ(nπ)22+sinnπ(nπ)22

The above equation becomes,

bn=2sinnπ(nπ)2+cos3nπnπ+cosnπnπ2sin3nπ(nπ)2+2sinnπ(nπ)2

Substitute the values of a0, an, and bn in equation (1) as follows,

g(t)=0+n=1[(2sinnπnπ+4cosnπ(nπ)2sin3nπnπsinnπnπ2cos3nπ(nπ)2+2cosnπ(nπ)2)cosn(π2)t]+n=1[(2sinnπ(nπ)2+cos3nπnπ+cosnπnπ2sin3nπ(nπ)2+2sinnπ(nπ)2)cosn(π2)t]=n=1[(0+4(1)n(nπ)2002cos3nπ(nπ)2+2(1)n(nπ)2)cosn(π2)t]+n=1[(0+cos3nπnπ+(1)nnπ0+0)cosn(π2)t]=n=1[(4(1)n(nπ)22cos3nπ(nπ)2+2(1)n(nπ)2)cosn(π2)t]+n=1[(cos3nπnπ+(1)nnπ)cosn(π2)t]        (19)

g(t)=n=1[(6(1)n(nπ)22cos3nπ(nπ)2)cosn(π2)t]+n=1[(cos3nπnπ+(1)nnπ)cosn(π2)t]

The above equation becomes,

g(t)=n=1[(6(1)n2cos3nπ(nπ)2)cosn(π2)t]+n=1[(cos3nπ+(1)nnπ)cosn(π2)t]

For n=1,

y1(t)=g(t) have the Fourier coefficients ao, a1 and b1.

Therefore, equation (19) will be as follows,

y1(t)=[(2sinππ+4cosπ(π)2sinππsinππ2cos3π(π)2+2cosπ(π)2)cos(π2)t]+[(2sinπ(3π)2+cos3π3π+cosπ3π2sin3π(3π)2+2sinπ(3π)2)cos(π2)t]+=[(04(π)200+2(π)22(π)2)cos(π2)t]+[(013π13π+0+0)cos(π2)t]

y1(t)=[4π2cos(π2)t][23πcos(π2)t]

For n=2,

y2(t)=g(t) have the Fourier coefficients ao, a1, a2 and b1, b2.

Therefore, equation (19) will be as follows,

y2(t)=[(2sinππ+4cosπ(π)2sinππsinππ2cos3π(π)2+2cosπ(π)2)cos(π2)t]+[(2sinπ(3π)2+cos3π3π+cosπ3π2sin3π(3π)2+2sinπ(3π)2)cos(π2)t]+[(2sin2π2π+4cos2π(2π)2sin6π2πsin2π2π2cos6π(2π)2+2cos2π(2π)2)cos2(π2)t]+[(2sin2π(2π)2+cos6π2π+cos2π2π2sin6π(2π)2+2sin2π(2π)2)cos2(π2)t]+=[(04(π)200+2(π)22(π)2)cos(π2)t]+[(013π13π+0+0)cos(π2)t]+[(0+4(2π)2002(2π)2+2(2π)2)cos2(π2)t]+[(0+12π+12π0+0)cos2(π2)t]y2(t)=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]

For n=3,

y3(t)=g(t) have the Fourier coefficients ao, a1, a2, a3 and b1, b2, b3.

Therefore, equation (19) will be as follows,

y3(t)=[(2sinππ+4cosπ(π)2sinππsinππ2cos3π(π)2+2cosπ(π)2)cos(π2)t]+[(2sinπ(3π)2+cos3π3π+cosπ3π2sin3π(3π)2+2sinπ(3π)2)cos(π2)t]+[(2sin2π2π+4cos2π(2π)2sin6π2πsin2π2π2cos6π(2π)2+2cos2π(2π)2)cos2(π2)t]+[(2sin2π(2π)2+cos6π2π+cos2π2π2sin6π(2π)2+2sin2π(2π)2)cos2(π2)t]+[(2sin3π3π+4cos3π(3π)2sin9π3πsin3π3π2cos9π(3π)2+2cos3π(3π)2)cos3(π2)t]+[(2sin3π(3π)2+cos9π3π+cos3π3π2sin9π(3π)2+2sin3π(3π)2)cos3(π2)t]

y3(t)=[(04(π)200+2(π)22(π)2)cos(π2)t]+[(013π13π+0+0)cos(π2)t]+[(0+4(2π)2002(2π)2+2(2π)2)cos2(π2)t]+[(0+12π+12π0+0)cos2(π2)t]+[(04(3π)200+2(3π)22(3π)2)cos3(π2)t]+[(013π13π0+0)cos3(π2)t]=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]+[49π2cos3(π2)t][23πcos3(π2)t]=[4π223π]cos(π2)t+[1π2+1π]cos2(π2)t+[49π223π]cos3(π2)t=0.193cos(π2)t+0.419cos2(π2)t0.167cos3(π2)t

Similarly, for n=5,

y5(t)=g(t) have the Fourier coefficients ao, a1, a2, a3, a4, a5 and b1, b2, b3, b4, b5.

Therefore, equation (19) will be as follows,

y5(t)=y3(t)+[(2sin4π4π+4cos4π(4π)2sin12π4πsin4π4π2cos12π(4π)2+2cos4π(4π)2)cos4(π2)t]+[(2sin4π(4π)2+cos12π4π+cos4π4π2sin12π(4π)2+2sin4π(4π)2)cos4(π2)t]+[(2sin5π5π+4cos5π(5π)2sin15π5πsin5π5π2cos15π(5π)2+2cos5π(5π)2)cos5(π2)t]+[(2sin5π(5π)2+cos15π5π+cos5π5π2sin15π(5π)2+2sin5π(5π)2)cos5(π2)t]=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]+[49π2cos3(π2)t][23πcos3(π2)t]+[(0+4(4π)2002(4π)2+2(4π)2)cos4(π2)t]+[(0+14π+14π0+0)cos4(π2)t]+[(04(5π)200+2(5π)22(5π)2)cos5(π2)t]+[(015π15π0+0)cos5(π2)t]

y5(t)=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]+[49π2cos3(π2)t][23πcos3(π2)t]+[14π2cos4(π2)t]+[12πcos4(π2)t][425π2cos5(π2)t][25πcos5(π2)t]=[4π223π]cos(π2)t+[1π2+1π]cos2(π2)t+[49π223π]cos3(π2)t+[14π2+12π]cos4(π2)t[425π2+25π]cos5(π2)ty5(t)=0.193cos(π2)t+0.419cos2(π2)t0.167cos3(π2)t+0.184cos4(π2)t0.143cos5(π2)t

Write the MATLAB Code to plot y3(t), y5(t) along with g(t) as follows:

t=linspace(-3,5,1000);

g0=0;

N=40;

for i=1:1000;

   y3=0.193*cos(pi*t/2) + 0.419*cos(pi*t) - 0.167*cos(3*pi*t/2);

   y5=0.193*cos(pi*t/2) + 0.419*cos(pi*t) - 0.167*cos(3*pi*t/2) + 0.184*cos(2*pi*t) - 0.143*cos(5*pi*t/2);

end

for i=1:1000;

sum=0;  

    for n=1:N;     

      sum=sum+((6*(-1)^n - 2*cos(3*n*pi))/(n*pi)^2)*cos(n*pi*t(i)/2) +  (((-1)^n + cos(3*n*pi))/(n*pi))*cos(n*pi*t(i)/2);

    end

gt(i)=g0+sum;

end

plot(t,y3,'b', t,y5,'r', t,gt,'g')

legend({'y3','y5','gt'},'Location','best')

xlabel('Time t in sec')

ylabel('The values y3, y5, and gt')

title('Plots for y3, y5, and gt')

Matlab output:

Figure 1 shows the plot y3(t), y5(t) along with g(t).

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 17, Problem 9E

Conclusion:

Thus, the plot y3(t) and y5(t) for the periodic waveform g(t) is sketched as shown in Figure 1.

(b)

To determine

Find the values of y1(0.5), y2(0.5), y3(0.5), and g(0.5)

(b)

Expert Solution
Check Mark

Answer to Problem 9E

The values of y1(0.5), y2(0.5), y3(0.5), and g(0.5) is determined.

Explanation of Solution

Given data:

Refer to Figure 17.29 in the textbook.

Calculation:

From Part (a), the function g(t) is,

g(t)=n=1[(6(1)n2cos3nπ(nπ)2)cosn(π2)t]+n=1[(cos3nπ+(1)nnπ)cosn(π2)t]

Finding g(0.5),

g(0.5)=[(6(1)(1)2cos3(1)π((1)π)2)cos0.5(1)(π2)]+[(cos3(1)π+(1)(1)(1)π)cos0.5(1)(π2)]+[(6(1)(2)2cos3(2)π((2)π)2)cos0.5(2)(π2)]+[(cos3(2)π+(1)(2)(2)π)cos0.5(2)(π2)]=[0.286]+[0.449]+[0]+[0]=0.163

The value of g(t) at t=0.5 sec is approximately 0.163, therefore the calculated value and the value found in Figure 1 is satisfied.

From Part (a),

y1(t)=[4π2cos(π2)t][23πcos(π2)t]

Finding y1(0.5),

y1(0.5)=[4π2cos(π2)(0.5)][23πcos(π2)(0.5)]=[4π2×0.707][23π×0.707]=0.2860.15=0.136

From Part (a),

y2(t)=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]

Finding y2(0.5):

y2(0.5)=[4π2cos(π2)0.5][23πcos(π2)0.5]+[1π2cos2(π2)0.5]+[1πcos2(π2)0.5]=0.2860.15+0.0506+0.159=0.346

From part (a),

y3(t)=[4π2cos(π2)t][23πcos(π2)t]+[1π2cos2(π2)t]+[1πcos2(π2)t]+[49π2cos3(π2)t][23πcos3(π2)t]

Finding y3(0.5):

y3(0.5)=[4π2cos(π2)0.5][23πcos(π2)0.5]+[1π2cos2(π2)0.5]+[1πcos2(π2)0.5]+[49π2cos3(π2)0.5][23πcos3(π2)0.5]=0.2860.15+0.0506+0.1590.032+0.150=0.464

The value of y3(t) at t=0.5 sec is approximately 0.464, therefore the calculated value and the value found in Figure 1 is satisfied.

Finding y5(0.5):

y5(t)=0.193cos(π2)(0.5)+0.419cos2(π2)(0.5)0.167cos3(π2)(0.5)+0.184cos4(π2)(0.5)0.143cos5(π2)(0.5)=0.464+[0.184cos4(π2)(0.5)0.143cos5(π2)(0.5)]=0.4640.184+0.101=0.381

Conclusion:

Thus, the values of y1(0.5), y2(0.5), y3(0.5), and g(0.5) is determined.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Determine the Fourier series representation of the following discrete time signal x(n) = {..... , 1, 2, -3,1,2,-3,1,2,-3,......} (Hint: This is periodic signal)
Let's examine the function g(t)= {Go for -π < t < -(π/2), {-Go for -(π/2) < t < (π/2), {Go for (π/2) < t < π,  which is characterized by being 2π-periodic. Sketch the g(t) graph within the range of [-4π,4π].  Then, express the Fourier expansion of g(t). Finally, Plot using the first 3, 5, 10, 15, 20, and 25 terms of the series and tell at what point the graph starts resembling your initial sketch.
Find the Fourier series representation of f(t) = 1 + t, −π < t < π , period 2π .

Chapter 17 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 17.6 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.8 - Find (a) F5sin23t); (b) FAsin20t); (c)...Ch. 17.9 - Prob. 15PCh. 17.10 - Prob. 16PCh. 17 - Determine the fundamental frequency, fundamental...Ch. 17 - Plot multiple periods of the first, third, and...Ch. 17 - Calculate a0 for the following: (a) 4 sin 4t; (b)...Ch. 17 - Prob. 4ECh. 17 - Prob. 5ECh. 17 - Prob. 6ECh. 17 - Prob. 7ECh. 17 - With respect to the periodic waveform sketched in...Ch. 17 - Prob. 9ECh. 17 - Prob. 10ECh. 17 - A half-sinusoidal waveform is shown in Fig. 17.31,...Ch. 17 - Plot the line spectrum (limited to the six largest...Ch. 17 - Prob. 13ECh. 17 - Prob. 14ECh. 17 - Prob. 15ECh. 17 - Prob. 16ECh. 17 - Prob. 17ECh. 17 - Prob. 18ECh. 17 - The nonperiodic waveform g(t) is defined in Fig....Ch. 17 - Prob. 20ECh. 17 - Prob. 21ECh. 17 - Prob. 22ECh. 17 - Prob. 23ECh. 17 - Prob. 24ECh. 17 - Prob. 25ECh. 17 - Prob. 26ECh. 17 - Prob. 27ECh. 17 - Prob. 28ECh. 17 - Prob. 29ECh. 17 - Prob. 30ECh. 17 - Prob. 31ECh. 17 - Prob. 32ECh. 17 - Prob. 33ECh. 17 - Prob. 34ECh. 17 - Prob. 35ECh. 17 - Prob. 36ECh. 17 - Use the Fourier transform to obtain and plot the...Ch. 17 - Prob. 38ECh. 17 - Prob. 39ECh. 17 - Prob. 40ECh. 17 - For g(t) = 3etu(t), calculate (a) G(j); (b) ().Ch. 17 - Prob. 42ECh. 17 - Prob. 43ECh. 17 - Prob. 44ECh. 17 - Prob. 45ECh. 17 - Prob. 46ECh. 17 - Find F(j) if f(t) is given by (a) 2 cos 10t; (b)...Ch. 17 - Prob. 48ECh. 17 - Prob. 49ECh. 17 - Prob. 50ECh. 17 - Prob. 51ECh. 17 - Prob. 52ECh. 17 - Prob. 53ECh. 17 - If a system is described by transfer function h(t)...Ch. 17 - Prob. 55ECh. 17 - (a) Design a noninverting amplifier having a gain...Ch. 17 - Prob. 57ECh. 17 - Prob. 58ECh. 17 - Prob. 59ECh. 17 - Prob. 60ECh. 17 - Prob. 61ECh. 17 - Prob. 62ECh. 17 - Design an audio amplifier with gain of 10, using...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,