Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
11th Edition
ISBN: 9781259679407
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17.1, Problem 17.35P

The 1.5-kg uniform slender bar AB is connected to the 3-kggear B that meshes with the stationary outer gear C. The centroidal radius of gyration of gear B is 30 mm. Knowing that the system is released from rest in the position shown, determine (a) the angular velocity of the bar as it passes through the vertical position, (b) the corresponding angular velocity of gear B.

  Chapter 17.1, Problem 17.35P, The 1.5-kg uniform slender bar AB is connected to the 3-kggear B that meshes with the stationary

Expert Solution
Check Mark
To determine

i.

Calculate the angular velocity of the bar when the bar is a vertical position.

Answer to Problem 17.35P

Angular velocity of the bar AB is 11.57rad/sec a vertical position.

Explanation of Solution

Given:

Bar AB is connected to gear B which meshes with outer gear C. System is released from the rest.

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.1, Problem 17.35P , additional homework tip  1

Mass of bar AB, mAB=1.5kg

Mass of gear B, mB=3kg

The radius of gyration of gear B, kB=30mm=0.03m

The radius of gear B, rB=50mm=0.05m

Length of Bar AB, LAB=120mm=0.12m

Concept used:

Energy conservation principle

Calculation:

Initial Position: the system is at rest

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.1, Problem 17.35P , additional homework tip  2

Kinetic energy, T1=mv122=0 (v1=0)

Potential energy, v1=mgh1=0 (h1=0)

Final position: the bar is a vertical position

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.1, Problem 17.35P , additional homework tip  3

Moment of inertia of bar AB,

IAB=mABLAB212=0.0018kg.m2

Moment of inertia of gear B,

IB=mBkB2=0.0027kg.m2

vB=LABωAB

But, vB=rBωB

ωB=LABrBωAB

Kinetic energy,

T2=mABvAB22+IABωAB22+mBvB22+IBωB22=mABLAB2ωAB28+IABωAB22+mBLAB2ωAB22+IBLAB2ωAB22rB2=0.0027ωAB2+9×104ωAB2+0.0216ωAB2+7.776×103ωAB2=0.03297ωAB2

Potential energy,

v2=wABLAB2wBLAB=(mAB×g)0.06(mB×g)0.12=0.88293.5316=4.4145J

By energy conservation principle;

T1+v1=T2+v20=0.03297ωAB24.4145ωAB=11.57rad/sec

Conclusion:

Thus, the angular velocity of rod AB can be calculated by the energy conservation principle by considering the initial and final condition of the system.

Expert Solution
Check Mark
To determine

ii.

Calculate the angular velocity of gear B.

Answer to Problem 17.35P

Angular velocity of gear B is 27.768rad/sec.

Explanation of Solution

Given:

Mass of bar AB, mAB=1.5kg

Mass of gear B, mB=3kg

The radius of gyration of gear B, kB=30mm=0.03m

The radius of gear B, rB=50mm=0.05m

Length of Bar AB, LAB=120mm=0.12m

Concept used:

Energy conservation principle

Calculation:

Considering the value calculated in sub-part (i);

ωAB=11.57rad/sec

We know that,

ωB=LABrBωAB=0.120.0511.57ωB=27.768rad/sec

Conclusion:

Thus, the corresponding angular velocity of gear B can be calculated by simple calculations.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The rotor of an electric motor has a mass of 25 kg, and it is observed that 4.2 min is required for the rotor to coast to rest from an angular velocity of 3600 rpm. Knowing that kinetic friction produces a couple of magnitude 1.2 N.m, determine the centroidal radius of gyration for the rotor.
A semicircular panel with a radius r is attached with hinges to a circular plate with a radius r and initially is held in the vertical position as shown. The plate and the panel are made of the same material and have the same thickness. Knowing that the entire assembly is rotating freely with an initial angular velocity of w0 , determine the angular velocity of the assembly after the panel has been released and comes to rest against the plate.
It takes 10 min for a 2.4-Mg flywheel to coast to rest from an angular velocity of 300 rpm. Knowing that the radius of gyration of the flywheel is 1 m, determine the average magnitude of the couple due to kinetic friction in the bearing.

Chapter 17 Solutions

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card

Ch. 17.1 - The flywheel of a punching machine has a mass of...Ch. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Prob. 17.11PCh. 17.1 - Prob. 17.12PCh. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - Prob. 17.17PCh. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - Prob. 17.25PCh. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - A 9-in.-radius cylinder of weight 18 Ib rests on a...Ch. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - Prob. 17.86PCh. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - Prob. 17.105PCh. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - The slender rod AB of length L=1 m forms an angle...Ch. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - A slender rod of mass m and length L is released...Ch. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Each of the bars AB and BC is of length L=400 mm...Ch. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - Prob. 17.138RPCh. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY