Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
11th Edition
ISBN: 9781259679407
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 17.3, Problem 17.111P

A uniform slender rod of length L is dropped onto rigid supports at A and B. Because support B is slightly lower than support A, the rod strikes A with a velocity v ¯ before it strikes B. Assuming perfectly elastic impact at both A and B, determine the angular velocity of the rod and the velocity of its mass center immediately after the rod (a) strikes support A, (b) strikes support B, (c) again strikes support A.

  Chapter 17.3, Problem 17.111P, A uniform slender rod of length L is dropped onto rigid supports at A and B. Because support B is

Expert Solution
Check Mark
To determine

(a)

Calculate the angular velocity and mass center velocity of rob when rod strikes support A.

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.3, Problem 17.111P , additional homework tip  1

Answer to Problem 17.111P

While rod strikes support A,

Angular velocity of rod =(3v1)/L

Mass center velocity of rod = v1/L

Explanation of Solution

For impact at A

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.3, Problem 17.111P , additional homework tip  2

E=1 and (vA)=v1

As per kinematics,

V2=L/2 ω2(vA)2=L/2ω2v1

Taking moment at A,

mV1L/2+0=mv2L/2+Iω2mV1L/2=m[1/2ωv1]L/2+[1/12mL2]Iω2

Further solving, we get

ω2=3v1/L

and mass center velocity of rod,

V2=L/2 ω2v1=L/2(3v1/L)v1=3/2v1v1=v1(3/21)V2=1/2v1

Conclusion:

Rod having length is supported by both end at A and B support B is lower than support A. Hence, rod with velocity v1strikes A before striking to B, assuming perfect elasticity between A and B.

Angular velocity of rod is (3v1)/L and Mass centre velocity of rod is v1/L.

(b)

Expert Solution
Check Mark
To determine

Calculate the angular velocity and mass center velocity of the rod when rod stricken supports B.

Answer to Problem 17.111P

When rod strikes support B,

The angular velocity of rod = (3v10/L)

The mass center velocity of rod = (v1/2)

Explanation of Solution

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.3, Problem 17.111P , additional homework tip  3

E=1 and (vB)2=2v1

As per kinematics,

V=(vB)2L/2ω=2v11/2ω

Taking moment at B1

mv2L/2+Iω+0=mv3L/3Iω3(mL/2xv1/2)+(1/12mL2x3v1/L=m(2v1L/2ω3)L/2(1/12mL2)ω3mLv1/4+3v1mL2/12L=2mLv1/2mω3L2/4mL2ω3/12mLv1/4+mL2v1/4=mLv1mL2ω3/4mL2ω3/12mL2ω3/4+mL2ω3/12=mLv1mL2ω3/4(1+1/3)=mLv1ω3=3/4xmLv1x4/mL2ω3=3v1/L

Now, mass center velocity of rod,

v3=2v1L/2(3v1/L)=v1/2

Conclusion:

Rod having length is supported by both end at A and B support B is lower than support A. Hence rod with velocity v1 strikes A before striking to B. assuming perfect elasticity between A and B.

The angular velocity of rod is (3v10/L) and the mass center velocity of rod is (v1/2).

(c)

Expert Solution
Check Mark
To determine

Calculate the angular velocity and mass center velocity of the rod when rod strikes A again?

Answer to Problem 17.111P

When rod strikes A again

The angular velocity of rod = 0

The mass center velocity of rod = v1

Explanation of Solution

For impact A again,

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 17.3, Problem 17.111P , additional homework tip  4

E=1 and (vA)=v1

As per kinematics,

V4=(vA)4+L/2ω4=v1+L/2ω4

Taking moment about A,

mv3L/2+Iω3+0=mv4L/4+Iω4m(v1/2)L/2+(1/12mL2ω3)=m(v1+L/2ω4)L/2+(1/12mL2)ω4mv1L/4+mL2ω3/12=mv1L/2+mL2ω4/4+mL2ω4/12mv1L/4+3mL2ω3/12=mv1L/2+mL2ω4/4(1+1/3)mv1L/4+mvL/4mv1L/2=4/3(mL2ω4/4)2(mv1L/4)mv1L/2=4/3(mL2ω4/4)mv1L/2(2/21)=4/3(mL2ω4/4)mv1Lx3x4/2x4xmL2=ω40=ω4

And mass center velocity of rod,

v1=v1+0v1=v1

Conclusion:

Rod having length is supported by both end at A and B support B is lower than support A. Hence rod with velocity v1 strikes A before striking to B assuming perfect elasticity between A and B.

The angular velocity of rod is 0 and the mass center velocity of rod is v1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Sphere A Mass m and radius r rolls without slipping with a velocity V1 on a horizontal surface when it hits squarely an identical sphere B that is at rest. Denoting by μk the coefficient of kinetic friction between the spheres and the surface, neglecting friction between the spheres, and assuming perfectly elastic impact, determine (a ) the linear and angular velocities of each sphere immediately after the impact, (b) the velocity of each sphere after it has started rolling uniformly.
A bullet weighing 0.08 lb is fired with a horizontal velocity of 1800 ft/s into the lower end of a slender 15-lb bar of length L = 30 in. Knowing that h = 12 in. and that the bar is initially at rest, determine (a) the angular velocity of the bar immediately after the bullet becomes embedded, (b ) the impulsive reaction at C , assuming that the bullet becomes embedded in 0.001 s.
A 18-kg rear hatch of a vehicle opens as shown in the figure and can be modeled as a uniform 0.6-m long slender rod. Knowing that the tailgate is released from rest in the position shown in the figure, determine the angular velocity of the tailgate as it impacts the car body.

Chapter 17 Solutions

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card

Ch. 17.1 - The flywheel of a punching machine has a mass of...Ch. 17.1 - Prob. 17.7PCh. 17.1 - Prob. 17.8PCh. 17.1 - Prob. 17.9PCh. 17.1 - Prob. 17.10PCh. 17.1 - Prob. 17.11PCh. 17.1 - Prob. 17.12PCh. 17.1 - The gear train shown consists of four gears of the...Ch. 17.1 - Prob. 17.14PCh. 17.1 - Prob. 17.15PCh. 17.1 - Prob. 17.16PCh. 17.1 - Prob. 17.17PCh. 17.1 - A slender 9-lb rod can rotate in a vertical plane...Ch. 17.1 - Prob. 17.19PCh. 17.1 - Prob. 17.20PCh. 17.1 - A collar with a mass of 1 kg is rigidly attached...Ch. 17.1 - Prob. 17.22PCh. 17.1 - Prob. 17.23PCh. 17.1 - The 30-kg turbine disk has a centroidal radius of...Ch. 17.1 - Prob. 17.25PCh. 17.1 - Prob. 17.26PCh. 17.1 - Prob. 17.27PCh. 17.1 - Prob. 17.28PCh. 17.1 - Prob. 17.29PCh. 17.1 - A half-cylinder with mass m and radius r is...Ch. 17.1 - Prob. 17.31PCh. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - Two uniform cylinders, each of weight W=14 lb and...Ch. 17.1 - A bar of mass m=5 kg is held as shown between four...Ch. 17.1 - The 1.5-kg uniform slender bar AB is connected to...Ch. 17.1 - Prob. 17.36PCh. 17.1 - A 5-m-long ladder has a mass of 15 kg and is...Ch. 17.1 - Prob. 17.38PCh. 17.1 - Prob. 17.39PCh. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - The mechanism shown is one of two identical...Ch. 17.1 - Each of the two rods shown is of length L=1 m and...Ch. 17.1 - The 4-kg rod AB is attached to a collar of...Ch. 17.1 - If in Prob. 17.43 the angular velocity of the...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The uniform rods AB and BC weigh 2.4 kg and 4 kg,...Ch. 17.1 - The 80-mm-radius gear shown has a mass of 5 kg and...Ch. 17.1 - Prob. 17.48PCh. 17.1 - Three shafts and four gears are used to form a...Ch. 17.1 - Prob. 17.50PCh. 17.1 - The drive belt on a vintage sander transmits 12 hp...Ch. 17.2 - Slender bar A is rigidly connected to a massless...Ch. 17.2 - A 1-m-long uniform slender bar AB has an angular...Ch. 17.2 - The 350-kg flywheel of a small hoisting engine has...Ch. 17.2 - A sphere of radius r and mass m is placed on a...Ch. 17.2 - Prob. 17.F3PCh. 17.2 - Prob. 17.52PCh. 17.2 - Prob. 17.53PCh. 17.2 - Prob. 17.54PCh. 17.2 - Prob. 17.55PCh. 17.2 - Prob. 17.56PCh. 17.2 - A disk of constant thickness, initially at rest,...Ch. 17.2 - Prob. 17.58PCh. 17.2 - A cylinder of radius r and weight W with an...Ch. 17.2 - Each of the double pulleys shown has a centroidal...Ch. 17.2 - Prob. 17.61PCh. 17.2 - Prob. 17.62PCh. 17.2 - Prob. 17.63PCh. 17.2 - A tape moves over the two drums shown. Drum A...Ch. 17.2 - Prob. 17.65PCh. 17.2 - Prob. 17.66PCh. 17.2 - Prob. 17.67PCh. 17.2 - Consider a rigid body initially at rest and...Ch. 17.2 - Prob. 17.69PCh. 17.2 - Prob. 17.70PCh. 17.2 - Prob. 17.71PCh. 17.2 - Prob. 17.72PCh. 17.2 - A 9-in.-radius cylinder of weight 18 Ib rests on a...Ch. 17.2 - Prob. 17.74PCh. 17.2 - Prob. 17.75PCh. 17.2 - Prob. 17.76PCh. 17.2 - A sphere of radius r and mass m is projected along...Ch. 17.2 - Prob. 17.78PCh. 17.2 - Prob. 17.79PCh. 17.2 - Prob. 17.80PCh. 17.2 - Two 10-lb disks and a small motor are mounted on a...Ch. 17.2 - Prob. 17.82PCh. 17.2 - A 1.6-kg tube AB can slide freely on rod DE, which...Ch. 17.2 - In the helicopter shown, a vertical tail propeller...Ch. 17.2 - Prob. 17.85PCh. 17.2 - Prob. 17.86PCh. 17.2 - Prob. 17.87PCh. 17.2 - Prob. 17.88PCh. 17.2 - Prob. 17.89PCh. 17.2 - Prob. 17.90PCh. 17.2 - Prob. 17.91PCh. 17.2 - Prob. 17.92PCh. 17.2 - Prob. 17.93PCh. 17.2 - Prob. 17.94PCh. 17.2 - Prob. 17.95PCh. 17.3 - A uniform slender rod AB ofmass m is at rest on a...Ch. 17.3 - Prob. 17.F5PCh. 17.3 - Prob. 17.F6PCh. 17.3 - Prob. 17.96PCh. 17.3 - A bullet weighing 0.08 lb is fired with a...Ch. 17.3 - Prob. 17.98PCh. 17.3 - Prob. 17.99PCh. 17.3 - Prob. 17.100PCh. 17.3 - Prob. 17.101PCh. 17.3 - A 45-g bullet is fired with a velocity of 400 m/s...Ch. 17.3 - Prob. 17.103PCh. 17.3 - Prob. 17.104PCh. 17.3 - Prob. 17.105PCh. 17.3 - Prob. 17.106PCh. 17.3 - Prob. 17.107PCh. 17.3 - Prob. 17.108PCh. 17.3 - Determine the height h at which the bullet of...Ch. 17.3 - A uniform slender bar of length L=200 mm and mass...Ch. 17.3 - A uniform slender rod of length L is dropped onto...Ch. 17.3 - A uniform slender rod AB has a mass m, a length L,...Ch. 17.3 - The slender rod AB of length L=1 m forms an angle...Ch. 17.3 - The trapeze/lanyard air drop (t/LAD) launch is a...Ch. 17.3 - The uniform rectangular block shown is moving...Ch. 17.3 - The 40-kg gymnast drops from her maximum height of...Ch. 17.3 - A slender rod of mass m and length L is released...Ch. 17.3 - A uniformly loaded square crate is released from...Ch. 17.3 - A 1-oz bullet is fired with a horizontal velocity...Ch. 17.3 - For the beam of Prob. 17.119, determine the...Ch. 17.3 - The plank CDEhas a mass of 15 kg and rests on a...Ch. 17.3 - Prob. 17.122PCh. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - A slender rod AB is released from rest in the...Ch. 17.3 - Prob. 17.125PCh. 17.3 - A 2-kg solid sphere of radius r=40 mm is dropped...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Member ABC has a mass of 2.4 kg and is attached to...Ch. 17.3 - Sphere A of mass mA=2 kg and radius r=40 mm rolls...Ch. 17.3 - A large 3-lb sphere with a radius r=3 in. is...Ch. 17.3 - Prob. 17.131PCh. 17.3 - Sphere A of mass m and radius r rolls without...Ch. 17.3 - Prob. 17.133PCh. 17.3 - Each of the bars AB and BC is of length L=400 mm...Ch. 17 - A uniform disk, initially at rest and of constant...Ch. 17 - Prob. 17.136RPCh. 17 - Prob. 17.137RPCh. 17 - Prob. 17.138RPCh. 17 - A uniform slender rod is placed at corner B and is...Ch. 17 - Prob. 17.140RPCh. 17 - Prob. 17.141RPCh. 17 - Prob. 17.142RPCh. 17 - Prob. 17.143RPCh. 17 - A square block of mass m is falling with a...Ch. 17 - Prob. 17.145RPCh. 17 - A 1.8-lb javelin DE impacts a 10-lb slender rod...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY