Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 25P

A heat pump used for heating shown in Figure P18.25 is essentially an air conditioner installed backward. It extracts energy from colder air outside and deposits it in a warmer room. Suppose the ratio of the actual energy entering the room to the work done by the device’s motor is 10.0% of the theoretical maximum ratio. Determine the energy entering the room per joule of work done by the motor given that the inside temperature is 20.0°C and the outside temperature is −5.00°C.

Figure P18.25

Chapter 18, Problem 25P, A heat pump used for heating shown in Figure P18.25 is essentially an air conditioner installed

Blurred answer
Students have asked these similar questions
A substance undergoes the cyclic process shown in Figure P12.65. Work output occurs along path AB while work input is required along path BC, and no work is involved in the constant volume process CA. Energy transfers by heat occur during each process involved in the cycle. (a) What is the work output during process AB? (b) How much work input is required during process BC? (c) What is the net energy input Q during this cycle?
When a gas follows path 123 on the PV diagram in Figure P12.66, 418 J of energy flows into the system by heat and 2167 J of work is done on the gas. (a) What is the change in the internal energy of the system? (b) How much energy Q flows into the system if the gas follows path 143? The work done on the gas along this path is 263.0 J. What net work would be done on or by the system if the system followed (c) path 12341 and (d) path 14321? (e) What is the change in internal energy of the system in the processes described in parts (c) and (d)?
13. A heat engine takes heat QH from a hot reservoir and uses part ofthis energy to perform work W. Assuming that QH cannot be changed,how can the effi ciency of the engine be improved? (a) Increase thework W; the heat QC rejected to the cold reservoir increases as a result.(b) Increase the work W; the heat QC rejected to the cold reservoir remains unchanged. (c) Increase the work W; the heat QC rejected to thecold reservoir decreases as a result. (d) Decrease the work W; the heatQC rejected to the cold reservoir remains unchanged. (e) Decreasethe work W; the heat QC rejected to the cold reservoir decreases as aresult

Chapter 18 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 18 - Prob. 4OQCh. 18 - Consider cyclic processes completely characterized...Ch. 18 - Prob. 6OQCh. 18 - Prob. 7OQCh. 18 - Prob. 8OQCh. 18 - A sample of a monatomic ideal gas is contained in...Ch. 18 - Assume a sample of an ideal gas is at room...Ch. 18 - Prob. 11OQCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Discuss three different common examples of natural...Ch. 18 - The energy exhaust from a certain coal-fired...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Argon enters a turbine at a rate of 80.0 kg/min, a...Ch. 18 - Prob. 16PCh. 18 - A refrigerator has a coefficient of performance...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - In 1993, the U.S. government instituted a...Ch. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - A heat pump used for heating shown in Figure...Ch. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - An ice tray contains 500 g of liquid water at 0C....Ch. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - (a) Prepare a table like Table 18.1 for the...Ch. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - (a) Find the kinetic energy of the moving air in a...Ch. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - An idealized diesel engine operates in a cycle...Ch. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 18 - Prob. 64PCh. 18 - Prob. 65P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY