Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card
11th Edition
ISBN: 9781259679407
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19.2, Problem 19.39P

A 6-kg uniform cylinder can roll without sliding on a horizontal surface and is attached by a pin at point C to the 4-kg horizontal bar AB. The bar is attached to two springs, each having a constant of k = 5 kN/m, as shown. Knowing that the bar is moved 12 mm to the light of the equilibrium position and released, determine (a) the period of vibration of the system, (b) the magnitude of the maximum velocity of bar AB.
  Chapter 19.2, Problem 19.39P, A 6-kg uniform cylinder can roll without sliding on a horizontal surface and is attached by a pin at

Expert Solution
Check Mark
To determine

(a)

The period of vibration of the given system.

Answer to Problem 19.39P

Period of vibration, τn=0.226s

Explanation of Solution

Given information:

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  1

Mass of cylinder M=6Κg

Mass of bar m=4Κg

Amplitude xm=12mm

Spring constant k=5ΚΝ/m

Firstly we draw the free body diagram of the bar and the cylinder separately and calculate forces acting upon them. For the bar;

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  2

F=2kxP

But, F=maor,

F=mx¨

Then, mx¨=2kxPP=(mx¨+2kx)_______(1)

Now, for the disc,

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  3

Mx¨=PF_______(2)

Now, moment of inertia at point C, Iθ¨=Fr

Mr22θ¨=Fror,Mr2θ¨=F_______(3)

Put the values of equation (1) and (3) in equation (2);

Mx¨=(mx¨+2kx)Mrθ¨2Mx¨+Mr×x¨r2=(mx¨+2kx)Mx¨+Mx¨2=(mx¨+2kx)3Mx¨2+mx¨=2kx(m+3M2)x¨+2kx=0x¨+2km+3M2x=0

Here, θ¨=x¨randθ˙=x˙r

Compare the above equation with un-damped equation of vibration;

Mθ¨+ωn2θ=0

ωn2=2km+3M2ωn2=2×5×10004+9

ωn2=769.230769ωn=769.230769ωn=27.735rad/s

Thus, the time period:

τn=2πωnτn=2×3.1427.735τn=0.226s

Expert Solution
Check Mark
To determine

(b)

The maximum velocity of bar AB.

Answer to Problem 19.39P

Velocity, v=332.82mm/s

Explanation of Solution

Given information:

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  4

Mass of cylinder M=6Κg

Mass of bar m=4Κg

Amplitude xm=12mm

Spring constant k=5ΚΝ/m

Firstly, we draw the free body diagram of the bar and the cylinder separately and calculate forces acting upon them. For the bar;

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  5

F=2kxP

But, F=maor,

F=mx¨

Then, mx¨=2kxPP=(mx¨+2kx)_______(1)

Now, for the disc,

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card, Chapter 19.2, Problem 19.39P , additional homework tip  6

Mx¨=PF_______(2)

Now, moment of inertia at point C, Iθ¨=Fr

Mr22θ¨=Fror,Mr2θ¨=F_______(3)

Put the values of equation (1) and (3) in equation (2);

Mx¨=(mx¨+2kx)Mrθ¨2Mx¨+Mr×x¨r2=(mx¨+2kx)Mx¨+Mx¨2=(mx¨+2kx)3Mx¨2+mx¨=2kx(m+3M2)x¨+2kx=0x¨+2km+3M2x=0

Here, θ¨=x¨randθ˙=x˙r

Compare the above equation with un-damped equation of vibration;

Mθ¨+ωn2θ=0

ωn2=2km+3M2ωn2=2×5×10004+9

ωn2=769.230769ωn=769.230769ωn=27.735rad/s

Now, maximum velocity: v=ωnxm

v=12×27.735v=332.82mm/s

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 400-kg motor supported by four springs, each of constant 150 kN/m, and a dashpot of constant c = 6500 N·s/m is constrained to move vertically. Knowing that the unbalance of the rotor is equivalent to a 23-g mass located at a distance of 100 mm from the axis of rotation, determine for a speed of 800 rpm (a ) the amplitude of the fluctuating force transmitted to the foundation, (b ) the amplitude of the vertical motion of the motor.
A slender 10-kg bar AB with a length of l = 0.6 m is connected to two collars of negligible weight. Collar A is attached to a spring with a constant of k = 1.5 kN/m and can slide on a horizontal rod, while collar B can slide freely on a vertical rod. Knowing that the system is in equilibrium when bar AB is vertical and that collar A is given a small displacement and released, determine the period of the resulting vibrations.
A 6-kg uniform cylinder can roll without sliding on a horizontal surface and is attached by a pin at point C to the 4-kg horizontal bar AB to the 4-kg horizontal bar k= 5 kN/m, as shown. Knowing that the bar is moved 12 mm to the right of the equilibrium position and released, determine (a) the period of vibration of the system, (b) the magnitude of the maximum velocity of bar AB.

Chapter 19 Solutions

Package: Vector Mechanics For Engineers: Dynamics With 1 Semester Connect Access Card

Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - The uniform rod shown has mass 6 kg and is...Ch. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Prob. 19.61PCh. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 5-kg uniform rod CD of length l=0.7 m is welded...Ch. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - A homogeneous wire of length 2l is bent as shown...Ch. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - Prob. 19.85PCh. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license